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Microscopic model for FitzHugh-Nagumo dynamics

Anatoly Malevanets and Raymond Kapral
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 13 September 1996!

A microscopic reaction model with a FitzHugh-Nagumo mass action law is introduced. A Markov chain that
uses a birth-death description of the reaction mechanism and a random walk model for diffusion is constructed
and implemented as a lattice-gas automaton. It is shown that the local particle density probability distribution
is binomial in the high diffusion limit and the average particle density is governed by the FitzHugh-Nagumo
reaction-diffusion equation. The lattice-gas simulations are able to reproduce phenomena such as labyrinthine
patterns and Bloch fronts predicted to exist on the basis of the reaction-diffusion equation. The effects of
fluctuations on these chemical patterns, the breakdown of the mass-action and reaction-diffusion descriptions,
and the existence of phase transitions in the strong reaction limit are discussed.@S1063-651X~97!13703-5#

PACS number~s!: 82.20.Wt, 05.40.1j, 05.60.1w, 51.10.1y
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I. INTRODUCTION

The FitzHugh-Nagumo equation@1#

ut52u31u2v ,

vt5e~u2av2b! , ~1!

was originally constructed as a simple model for the ex
able behavior of nerve tissue. It mimics the behavior of
more realistic Hodgkin-Huxley equations, and while theu
and v variables may be roughly associated with the me
brane voltage and ion currents, respectively, their connec
with these physiological variables is not direct. Although t
antecedents of this model lie in physiology, it has seen wi
spread use as a generic model that exhibits many phenom
seen in bistable, excitable, or oscillatory chemical med
The existence ofS-shaped and linear nullclines are featur
common to many systems and allow for the possibility o
variety of dynamical states. In its spatially distributed for
as a reaction-diffusion equation,

ut52u31u2v1Du¹
2u ,

vt5e~u2av2b!1Dv¹
2v , ~2!

it has been used to study spiral wave dynamics in excita
media@2# as well as the varied front bifurcation phenome
@3–5# seen in recent chemical experiments on the iodi
ferrocyanide-sulfite system@6#. In this latter case the ratio o
the two diffusion coefficients plays an important role as
bifurcation parameter.

Given this rich phenomenology, it is of interest to co
struct a microscopic dynamics whose mean-field limit is
FitzHugh-Nagumo equation~1!. From a knowledge of such
microscopic dynamics a statistical mechanics that unde
the pattern formation processes seen in this system ma
constructed and the effects of correlations and fluctuati
on the dynamics may be studied.

We depart from the standard interpretation of t
FitzHugh-Nagumo~FHN! model in terms of nerve impuls
physiology and devise a chemical scheme whose mass-a
law is the FHN equation~1!. The reaction mechanism an
reduction to FHN kinetics are discussed in Sec. II. We c
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struct a microscopic collision dynamics corresponding to
mechanism and implement it in the context of a lattice-g
automaton@7#. The automaton construction is described
Sec. III. A formulation of the stochastic Markov chain d
namics underlying the model is given in Sec. IV. In th
section we also discuss the conditions under which the
croscopic dynamics reduces to the reaction-diffusion eq
tion. In Sec. V we demonstrate that the microscopic dyna
ics can reproduce the known front bifurcation phenome
seen in the reaction-diffusion equation. In Sec. VI we co
sider the effects of small fluctuations on the pattern form
tion processes, as well as the breakdown of the react
diffusion equation when reaction is sufficiently fast that
local equilibrium description of the dynamics is no long
applicable. Noise-induced phase transitions are examine
some detail. The conclusions of this study are given in S
VII.

II. FITZHUGH-NAGUMO REACTION KINETICS

A particular chemical mechanism is not usually asso
ated with FHN kinetics; in fact, the linear inhibition ofu by
the v variable poses problems for normal kinetic schem
However, it is possible to devise such a mechanism and
essential feature is its cooperative nature: the reaction s
not only depend on the local numbers of particles of
species but also on the numbers of vacancies or ‘‘hole
corresponding to the species.

We consider a two-variable, site-specific, reaction sche
where active sites can accommodate a maximum ofN mol-
ecules of speciesA andB. The vacancies corresponding
these species will be denoted byA* andB* , respectively.
The mechanism comprises two processes: a relaxation o
system toward either one of the pureA states where sites ar
either completely filled withA or completely empty ofA,
and a cyclic mechanism involving coupling of theA andB
species. The mechanism reads

2A1A* ——→
k1

3A,

2A*1A ——→
k1*

3A* , ~3a!
5657 © 1997 The American Physical Society
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~3b!

The cooperative kinetics arising from the dependence on
number of vacancies as well as the number of actual m
ecules present at a site has some features in common
biochemical reactions involving the cooperative binding
substrate molecules to an enzyme in a complex of allost
enzymes@8# or to reactions on surfaces which depend on
existence of vacancies@9#. This reaction scheme is to b
interpreted in the usual sense of mechanisms for syst
constrained to lie far from equilibrium, namely, feed spec
whose values are fixed by flows of reagents into and ou
the system are not explicitly indicated and their constant c
centrations are incorporated in the values of the rate c
stants. Consequently, the model does not satisfy detailed
ance and this is responsible for its rich mean-fie
phenomenology.

Examining the mechanism, one can see that if the den
of A particles exceeds that of the vacancies creation oA
particles prevails over creation of vacancies. The first ste
Eq. ~3a! supports the formation of pure phaseA with sites
completely filled and the second step favors a situat
where sites are completely empty. In contrast to the effec
Eq. ~3a!, the cyclic series of steps in Eq.~3b! accounts for
the interaction between theA andB species and favors th
formation of site states composed of both particles and
cancies. This leads to competition between the pure bist
states and gives rise to phenomena which are more com
than simple bistability.

The mass-action rate law that follows from Eq.~3! is

at5$k1a2k1* ~12a!%a~12a!1k2~12a!b2k2* a~12b!

[RA~a,b!,

bt5k3~12a!~12b!2k3* ab[RB~a,b!, ~4!

where a and b are the average concentrations per site
speciesA and B, respectively. If the rate constants satis
k25k2* and k35k3* and one makes use of the change
variablesa5cau1a0 andb5cbv1b0 where

ca
25

1

3 S k112k1*

k11k1*
D 22k21k1*

k11k1*
, a05

1

3

k112k1*

k11k1*
,

cb5
k11k1*

k2
ca
2 , b05a0cbH 12S a0caD

2J , ~5!

and the scaled time variablet5t/ts , with ts
215(k1

1k1* )ca
2 , one recovers the FHN rate law~1!. The parameters

in ~1! are related to the rate constants by

a5
cb
ca
, b5

b02a0
ca

, e5
k3
k2

ca
cb
2 . ~6!
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Using these results, the rate constants in the mechanism
be tuned to yield desired values of the FHN parameters.

III. LATTICE-GAS MODEL

Once a chemical mechanism is known it is possible
devise a microscopic reactive collision dynamics that
counts for the steps in the mechanism. We consider
implementation of the mechanism as a reactive lattice-
automaton and give descriptions in terms of a Markov ch
model in Sec. IV. Reactive lattice-gas models provide a M
kov chain description of the dynamics. They utilize a birt
death description of local reactive events at the lattice nod
while particle diffusion arises from the random walks t
particles execute on the lattice@10#.

We begin by introducing the notation used in the co
struction of the model. The coordinate space for the latti
gas model is a regular Bravais latticeL of elementary sites
l . Each site is occupied by some number of particles. T
occupation numbers of the different species are indepen
of each other so that the space of all possible site config
tionsB is a direct product of particle statesB5 ^ kZsk

, where

sk is the maximum number of states for species ‘‘k ’’ and
Zs5$nPZu0<n,s%. The maximum number of molecule
of speciesk is Nk and, henceforth, we assume thatNk5N
for all k. A lattice state is a distribution of particles on th
lattice and is given by a mappingL:L→B. The space of all
possible lattice states is denoted byV5BL. The distribution
of particles of only one species will be termed a lattice su
state and we designate lattice states and substates with b
board bold letters~e.g., for speciesA the lattice substate is
A). The lattice stateL is the collection of lattice substates fo
all speciesA, B, . . . , L5(A,B, . . . ) andeach sitel is de-
fined by a set of site occupation numbersl 5(n,m, . . . ),
where we usen for the particle number of speciesA, m for
speciesB, etc. The value of a state or substateS at a lattice
point r is designated byS(r ).

The evolution of a lattice state is governed by operat
acting onV. We restrict ourselves to operators defined
a composition of collision and translation operators. T
collision operators naturally arise from the represen
tion of a lattice state as a mapping ontoB. For any site
operator s:B→B8 there corresponds a lattice operat
Cs5s+L:L→B8. These operators act on each site indep
dently. Interactions between sites are accomplished by tr
lation operators which act on the lattice substates by tra
lating the particles in a chosen direction. Translation o
lattice substateS in a directionv is given by

S~r1v!5TvS~r ! . ~7!

Its action yields a change of the coordinate origin of t
lattice substate.

A. Brownian motion

We describe Brownian motion by the collective mov
ment in a random direction of an ensemble of randomly c
sen particles. In some implementations of diffusion rules
lattice-gas models particles are assigned velocities
propagate in directions determined by these velocities
neighboring lattice nodes where the velocities are rando
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55 5659MICROSCOPIC MODEL FOR FITZHUGH-NAGUMO DYNAMICS
ized @10#. An exact solution for the linear Markov proces
for this scheme shows that these random walkers are e
tively noninteracting and are binomially distributed. Th
model used here is different and makes use of an auxil
‘‘excited’’ particle lattice substateE and simulates diffusion
by a three-step algorithm:~a! transfer of at most one particl
per site to the excited state with a probability depending
the site occupation number;~b! translation of the excited
particles in a random direction chosen from a
V5$v1 , . . . ,vk%; ~c! accommodation of the excited particle
at new positions. The fact that only a maximum ofN par-
ticles of each species may reside at a node~exclusion prin-
ciple! requires a vacancy to exist at a site in order to be a
to accommodate a particle from the excited sublattice;
addition, we cannot create an excited particle from
vacuum, so that we have two restrictions on the excitat
probability: p(N)51 and p(0)50. We shall show in the
Sec. IV that the choice of a linear dependence of the exc
tion probability on the site occupation number leads to
concentration independent diffusion coefficient.

Consider the Brownian motion of particles of speciesA.
The lattice state comprises substates of speciesA, A, and the
auxiliary ‘‘excited’’ state speciesE, E. Formally, if the maxi-
mum occupation number isN, the above algorithm may b
expressed as the composition of three operators

D5Ca+Tv+Ct ~8!

whereTv is a translation of the lattice substateE in a ran-
domly chosen directionv, while Ct andCa are lattice opera-
tors corresponding to the following site operators:

t~n,e!5„n2u~n2Nj!,u~n2Nj!…, a~n,e!5~n1e,0!,
~9!

where u(x) is the Heaviside function,n is the number of
molecules of speciesA at a site, andj is a continuous, uni-
formly distributed, random variable on (0,1). The opera
t in Eq. ~9! corresponds to step~a! and transfers a particle t
the excited state while the operatora places an excited par
ticle in a new position determined by the action of the tra
lation operator. The algorithm is well defined since at ea
step the occupation number of each species is no gre
than N and is nonnegative;E<A on the first step and
E<1`A,N on the last.

In the Sec. IV we shall show that when correlations b
tween sites are neglected the above scheme leads to an
tropic diffusion equation. The isotropy does not arise fro
the symmetry of the underlying lattice but is a property
the Laplacian operator in the diffusion equation. Due to t
feature it suffices to consider a random walk on a squ
lattice for two dimensions and on a cubic lattice for thr
dimensions. However, in the presence of correlations
isotropy can be broken and to regain it one should util
lattices with symmetry groups larger than those of cubic
tices; e.g., the triangular lattice for two-dimensional syste
and the projection of the four-dimensional fcc lattice f
three-dimensional problems@11#. In simulations reported in
this paper we used a cubic lattice and a set of directions f
a four-dimensional fcc lattice for the three-dimensional co
putations and a nine-direction scheme, obtained by proj
ing the fcc velocity directions on a plane, for two
c-
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dimensional simulations. We note that the discrete diffus
operatorD has nonsymmetric terms of second order in t
lattice spacing.

B. Reactive dynamics

We now construct a two-species microscopic collisi
model which will be shown in Sec. IV to lead to th
FitzHugh-Nagumo equations in the Boltzmann approxim
tion. As earlier, we label species sublattices byA andB so
that the lattice state is given byL5(A,B) ~apart from excited
sublattice states used in the diffusion rule!. Each site is de-
fined by the set of occupation variablesl 5(n,m) wheren
andm are the numbers of molecules of speciesA andB at a
site. The reaction rule is carried out by randomly choos
one of ther56 channels in the mechanism~3! where each
channel is assigned an equal weight. A reactive event
quires a pair of random numbers (j,n), wherej is a continu-
ous, uniformly distributed, random number on (0,1) andn is
a discrete, uniformly distributed, random number
$1, . . . ,r %.

The local reactive dynamics at a node occurs by bir
death processes arising from ther56 steps in the reaction
mechanism. The reaction probabilitiespj corresponding to
each of these six steps are

p1~n,m!5g k̄1n~n21!~N2n!,

p2~n,m!5g k̄1* n~N2n!~N212n!,

p3~n,m!5g k̄2~N2n!m, p4~n,m!5g k̄2* n~N2m!,

p5~n,m!5g k̄3* ~N2n!~N2m!, p6~n,m!5g k̄3nm,
~10!

whereg is a scale factor that controls the overall time sc
of the reaction process andk̄15k1 /@(N21)(N22)#,
k̄1*5k1* /@(N21)(N22)# and k̄i5ki /N and k̄i*5ki* /N for
i52,3 whereki andki* are the reaction rate coefficients d
fined earlier. In writing this set of probabilities we have l
beled the stepsj5@1,6# in the reaction mechanism chara
terized by ki and ki* as follows: j52i21 for reactions
labeled byki and j52i for reactions labeled byki* . Site
operators corresponding to the different channels are ea
written in terms of these reaction probabilities and are giv
below

s1~n,m!5„n1u~p12j!,m… ,

s2~n,m!5„n2u~p22j!,m… ,

s3~n,m!5„n1u~p32j!,m… ,

s4~n,m!5„n2u~p42j!,m… ,

s5~n,m!5„n,m1u~p52j!… ,

s6~n,m!5„n,m2u~p62j!… .

We note that all of the operations are legitimate in the f
lowing sense: if the reaction rule creates a particle, a vaca
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exists; if a particle was destroyed, it existed prior to destr
tion. The local reaction rule has the following site opera
expression:

r~n,m!5(
j51

6

dn js j~n,m! , ~11!

andCr is the corresponding lattice operator onL5(A,B). An
important feature of the above scheme is that the reac
transitions among molecules and vacancies are such tha
exclusion principle is satisfied automatically.

IV. SITE MARKOV CHAIN DESCRIPTION

The lattice-gas rules constitute a Markov chain desc
tion of the dynamics on the finite lattice. In order to analy
the model in some detail we make the approximation that
full probability distribution is the product of single site prob
ability distributions. For reaction, no approximation is i
volved since reactions occur independenly on each lat
node. Correlations arising from exclusion are neglected
the diffusion rule, but we shall demonstrate that these
numerically small by comparison with simulation results.

A. Diffusion Markov chain

We now show that the evolution of the average parti
density defined by the Brownian motion algorithm is a
proximated by a diffusion equation. In the analysis we
sume that there is no correlation between lattice sites; he
the probability distribution function is equal to a product
reduced site probability distributions. This assumption w
be verified below by comparison with simulations. L
Pn(r ,t) be the probability of findingn molecules of species
A at the siter at time t. The evolution of the reduced prob
ability density is described by the following Markov chain

Pn~r ,t11!2Pn~r ,t !5(
n8

Wnn8
D

~r !Pn8~r ,t !, ~12!

where, using the random walk rule outlined in Sec. III
Wnn8

D (r ) is given by

Wnn8
D

5āS 12
n8

N D dn8,n211~12ā!
n8

N
dn8,n11

2F āS 12
n8

N D1~12ā!
n8

N Gdn8,n , ~13!

which depends on the average density in the neighborhoo
the pointr ,

n̄~r ,t !5
1

2d (
r8PN~r !

(
n

nPn~r 8,t !5
1

2d (
r8PN~r !

^n&~r 8,t ! ,

~14!

(d is the dimensionality! with ā(r ,t)5n̄(r ,t)/N. @We have
dropped the arguments ofā(r ,t) for notational simplicity.#
Multiplying Eq. ~12! by n and summing onn we obtain an
equation for the evolution of the expectation value of t
particle number
-
r

e
the

-

e

e
in
re

e
-
-
e,

l

of

^n&~r ,t11!2^n&~r ,t !5
1

2dN (
r8PN~r !

@^n&~r 8,t !2^n&~r ,t !#

5
1

2dN
D^n&~r ,t ! , ~15!

whereD is a discrete Laplacian operator. This is just a d
crete version of the diffusion equation with diffusion coef
cientD51/2dN.

The stationary probability distribution of Eq.~12! is bino-
mial. To show this it is convenient to consider the generat
function @12# of the distribution

F~x,r ,t !5 (
n50

N

Pn~r ,t !x
n . ~16!

Using this definition and Eq.~12! we find

F~x,r ,t11!2F~x,r ,t !

5H 2ā~12x!1
~12x!

N
@12ā~12x!#

]

]xJ F~x,r ,t ! .

~17!

The stationary, spatially homogeneous, generating fu
tion F(x) is given by the solution of

H 2a~12x!1
~12x!

N
@12a~12x!#

]

]xJ F~x!50 ,

~18!

which isF(x)5@12a(12x)#N, with a5^n&/N. This is the
generating function for a binomial distributionpn

B

5(n
N)an(12a)N2n.
The above analysis hinges on the approximation that

distribution function for the lattice is the product distributio
over lattice sites. Consequently, it is of interest to comp
the site distribution function obtained by direct simulation
the diffusion rule, which makes no assumption about in
pendence or correlations, with that predicted from the M
kov chain ~12!. The results of numerical simulations sho
that correlations among sites are negligible over the en
range of average particle densities and that the station
distribution is well described by a binomial distribution. B
analogy with the expression for the factorial cumulants o
discrete random variablen one may construct an expressio
for the generating function that gives only one nonvanish
cumulant for a binomial distribution. For the function

AN ^~11x!n&215(
j51

`

^^n&& j
xj

j !
~19!

the first factorial cumulant is equal to the average den
and for a binomial distribution the other cumulants are ze
In the limitN→` the above expression is proportional to t
standard expression for the factorial cumulants@12#. Compu-
tations yield the following values for the cumulant
^^n&&150.35, ^^n&&258.531025, and ^^n&&352.231024

confirming that correlations are indeed small. In Fig. 1 c
mulants computed over a range of average densities are c
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pared with cumulants of a binomial distribution. The valu
coincide for all average particle densities.

It is important to determine how quickly a binomial di
tribution is established at a node and to do this one need
estimate of the relaxation eigenvalues of the transition ma
of the Markov chain. We suppose that the average densit
the neighboring sites is fixed at the valuea and study the
evolution of the site probability density to a binomial dist
bution with densitya. Using the continuous-time version o
Eq. ~17! with ā(r ,t)5a and making the change of variab
z512x andF(x,t)5 f (z,t) we have

] f ~z,t !

]t
52H az1~12az!

z

N

]

]z J f ~z,t ! . ~20!

Equation~20! is equivalent to the following system of ord
nary differential equations:

tm51 , zm5
~12az!z

N
, f m52az f , ~21!

with initial conditions atm50 constrained by a curve param
eterized by variablez

t50 , z5z , f5v~z!~12az!N . ~22!

Solution of the system of equations~21! passing through the
surface~22! is

t5m , lnS az

12azD5
m

N
1 lnS az

12az D ,

ln~ f !5Nln~12az!1v~z! . ~23!

Elimination of the variablesm andz from the above system
gives the following solution of Eq.~20!:

f ~z,t !5~12az!NvS z

exp~ t/N!~12az!1azD . ~24!

From this equation we may read off the second largest
genvaluel1

D52(1/N). The average particle number relax
to a stationary value as

FIG. 1. Second (s) and third (1) cumulants compared with
their theoretical valuesa(12a)/N ~solid line! and a(2a21)(a
21)/N2 ~dotted line!.
s

an
ix
of

i-

^n&~ t !52
] f

]zUz505Na2e2t/N
]v~x!

]x U
x50

, ~25!

where we used conditionf uz5051, which must always be
imposed on a generating function of a probability distrib
tion.

The characteristic diffusion lengthLl associated with the
relaxation time 1/ul1

Du5N is Ll5ADN or, noting that
D51/2dN, Ll51/A2d which is of the order of a lattice
spacing. Consequently, the system will quickly relax to
local binomial distribution and one will be able to resolv
phenomena on the spatial scale of the lattice maintaining
local binomial distribution. This result will be used in th
subsequent analysis.

B. Reaction Markov chain

The microscopic, single-site, reaction dynamics can
written as a Markov chain. LetPnm(t) be the probability of
findingn molecules of speciesA andmmolecules of species
B at a site. In view of the birth-death description of th
reaction process at a site this probability satisfies the ev
tion equation,

Pnm~ t11!2Pnm~ t !5 (
n8,m8

Wnm,n8m8
R Pn8m8~ t ! , ~26!

where

Wnm,n8m8
R

5„p1~n,8m8!1p3~n,8m8!…dn,n811dm8m

1„p2~n,8m8!1p4~n,8m8!…dn,n821dm8m

1p5~n8,m8!dn8,ndm,m811

1p6~n8,m8!dn8,ndm,m821

2S (
i51

r

pi~n8,m8!D dn8,ndm8,m . ~27!

To obtain the generating function for the reaction we use
procedure described earlier for the diffusion model. Th
are two major differences: first, the distribution function f
reaction cannot be factored into a product of distributi
functions for theA andB species and second, due to absen
of site interactions, the equation for the stationary distrib
tion function is linear. The generating function for the pro
ability distribution function is

F~x,y,t !5 (
0<n,m<N

Pnm~ t !xnym . ~28!

Each reaction channel provides a contribution to the evo
tion equation for the generating function and using Eqs.~26!
and ~28! we find

F~x,y,t11!2F~x,y,t !5(
j51

6

C~ j !~x,y,t ![C~x,y,t !, ~29!

whereC( j )(x,y,t) is the contribution from channelj . Com-
puting these reactive terms explicitly we find
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C~x,y!5 k̄1~12x!xN11F Fxx

xN22G
x

1 k̄1* ~12x!xNF Fx

xN22G
xx

1 k̄2~12x!xN11yF FxNG
xy

2 k̄2* ~12x!yN11F FyNG
xy

1 k̄3~12y!xFxy2 k̄3* ~12y!~xy!N11F F

~yx!NG
xy

.

~30!

The rates of change of the average particle densities
given by a(t11)2a(t)5Cx(1,1,t)/N and b(t11)2b(t)
5Cy(1,1,t)/N. The condition for the probability distribution
function to be a stationary distribution function is tantamou
to the condition that the sum of all reaction terms vani
Equation~30! is quite difficult to solve analytically and it is
more rewarding to solve the underlying linear system
Pnm . We shall return to this expression in Sec. IV C as w
as in Sec. VI where the breakdown of the mean-field a
reaction-diffusion results are considered.

If one assumes diffusive mixing is strong, so that the s
tem is spatially homogeneous and the distribution is a pr
uct of binomial distributions for theA and B species, Eq.
~30! is easily evaluated. Using the generating function fo
binomial distribution function we have

F~x,y!5„11a~x21!…N„11b~y21!…N . ~31!

Substituting this expression into Eq.~30! and evaluating
the derivatives, we find Cx(1,1,t)/N5RA(a,b) and
Cy(1,1,t)/N5RB(a,b), whereRA(a,b) andRB(a,b) are the
mass-action rates given in Eq.~4!. Thus, we verify that the
mass-action rate law is found in this strong diffusion lim
when reactive correlations at a node are neglected.

We may confirm that the microscopic model yields resu
in agreement with the mass-action rate law in the stro
diffusion limit. In Fig. 2 we compare the stationary avera
densities obtained from simulations of the lattice-gas mo
with those obtained from the mean-field equations. T
mean-field steady states are given by stationary solution
Eq. ~4!. The reaction rate difference expressed as a func
of average density may be written as follows:

k12k1*5~2a21!Fk11k1*2
2k2

a~12a!G . ~32!

This equation yields a van der Waals loop. As the relat
stability of the stable states~defined by the difference in rat
coefficientsk12k1* ) changes, the system undergoes a fi
order phase transition. The position of the transition is
fined by the analog of a Maxwell rule and in this case c
responds to equal rate coefficients. The simulation res
were obtained by varyingk12k1* from negative to positive
values while keepingk11k1* constant. We observed hyste
esis when varyingk12k1* from positive to negative values
The average steady state densities are in good agree
with the mass-action law results.
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C. Reaction-diffusion equation

In the independent-site approximation, the Markov ch
describing both reaction and diffusion is obtained by co
bining the reaction and diffusion steps described individua
above. The Markov chain may be written in matrix form

P~r ,t11!5~WD11!~gWR11!P~r ,t ! , ~33!

where the parameterg can be used to gauge the relativ
magnitudes of the reaction and diffusion time scales. If b
diffusion and reaction probabilities are small, we may e
pand the matrix product to linear order to obtain,

P~r ,t11!2P~r ,t !5~WD1gWR!P~r ,t ![WP~r ,t !, ~34!

where the elements ofW are

Wnm,n8m85Wnn8
D dm,m81Wmm8

D dn,n81gWnm,n8m8
R . ~35!

An estimate of the reaction time scale may be obtained fr
the eigenvalues of the birth-death processes described b
matrixWR as follows:

ul j
Ru5

uuWRgj uu
uugj uu

<maxg
uuWRguu

uuguu
5uuWRuu, ~36!

where gj is an eigenvector labled by the indexj and the
vector normuu•uu may be chosen in any convenient way. F
a vector normuu(x1 , . . . ,xN)uu5(uxi u, the corresponding
matrix form is

uuWuu5maxj(
i

uWij u. ~37!

The chemical relaxation time determined byul1
Ru, the largest

chemical relaxation rate, should be slower than that co
sponding to the diffusion relaxation eigenvaluel1

D ; thus,
uuWRuu/ul1

Du5NuuWRuu!1.

FIG. 2. Steady state densities in the bistable regime as a f
tion of the rate coefficient differencek12k1* . The line represents
the FHN mass-action model and the points correspond to the ‘‘A
particle densities from simulations. Parameter values of Eq.~4! cor-
responding tok15k1* are e50.127, a55.12, andb50.0. The
simulation results were obtained by varyingk12k1* from negative
to positive values. The simulations were carried out on
23323323 lattice. The scaling constantc for the abscissa is
c58.167.
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Diffusion tends to homogenize the system; it breaks
correlations between theA andB species induced by reac
tion and leads to a local binomial distribution of molecules
a site. Provided the chemical reaction is a slow process
might expect the site distribution to be approximately bin
mial, characterized by the local particle density. In view
this we may construct the analog of a normal solution@13# to
the Markov chain~34!. We write the full distribution as the
sum of a binomial distribution plus a correction term

P~r ,t !5pB„c~r ,t !…1gF~r ,t ! , ~38!

where

pnm
B
„c~r ,t !…5pn

B
„a~r ,t !…pm

B
„b~r ,t !… , ~39!

is a product of binomial distributions for the two speci
characterized by their local densities. The local densi
c(r ,t)5„a(r ,t),b(r ,t)… are as yet unknown quantities. Th
function F and the densities are determined from Eq.~34!
and the solvability conditions

(
n,m

Fnm50 , (
n,m

nFnm50 , (
n,m

mFnm50 . ~40!

Substituting Eq.~38! into Eq. ~34! and using the solvability
conditions leads to equations for the local densities to or
g

a~r ,t11!2a~r ,t !5DADa~r ,t !1RA„c~r ,t !… ,

b~r ,t11!2b~r ,t !5DADb~r ,t !1RB„c~r ,t !… . ~41!

This is just the reaction-diffusion equation where the re
tion fluxes are given by

RA„c~r ,t !…5 (
nm,n8m8

nWnm,n8m8
R pn8m8

B ,

RB„c~r ,t !…5 (
nm,n8m8

mWnm,n8m8
R pn8m8

B , ~42!

and have the same mass-action forms given earlier. Sca
of space, time, and concentration variables gives
FitzHugh-Nagumo reaction-diffusion equation.

The deviations from the binomial distribution and the r
laxation to it can be found by computingF which satisfies
the equation,

F~r ,t11!2F~r ,t !5WDF~r ,t !1S~r ,t ! , ~43!

where

S~r ,t !5SWRpB2
]pB

]c
•RD . ~44!

Note that

(
n,m

nSnm5(
n,m

mSnm50 . ~45!

Thus, nSnm and mSnm are reactive flux deviations whos
means are zero. These fluxes act as source terms that
e
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the deviations from the local binomial distribution. Consi
ering the local densities as fixed parameters on the fast
scale of relaxation ofF, the solution of Eq.~43! subject to
the initial conditionF(t50)5S is

F~r ,t !5(
j50

t

~11WD! jS . ~46!

The characteristic relaxation rate forWD in this equation is
l1
D so that deviations from the local binomial distributio

relax rapidly and the reaction-diffusion description will b
valid providedNuuWRuu!1 as discussed above.

V. MICROSCOPIC SIMULATIONS
OF CHEMICAL PATTERNS

In Sec. IV we demonstrated that the microscopic dyna
ics reduces to the reaction-diffusion equation if relaxation
the local binomial distribution is rapid compared to chemic
and diffusion time scales and the distribution function is a
curately represented by a product of binomial distributio
characterized by the local species densities. If these co
tions are met fluctuations and correlations will be small a
the spatial and temporal scales of the phenomena of inte
will be large compared to microscopic scales, such as
lattice spacing or the discrete time step. In this regime
expect the microscopic simulations to reproduce results
tained by the reaction-diffusion equation, and this serves
test of the microscopic model in this limiting regime. In th
section we demonstrate that a number of different types
patterns predicted to exist on the basis of the reacti
diffusion equation are observed in simulations of the mic
scopic model.

The phenomenology of the FHN reaction-diffusion equ
tion is very rich: it possesses regimes of excitability, oscil
tions and bistability and their associated wave proces
Rather than reproducing all of this behavior, which we ha
verified can be examined in the context of the microsco
model, we focus on the bistable regime. Within this bista
regime we further limit our demonstrations to three e
amples: Ising and Bloch fronts in two spatial dimensions a
stable knots and links in three dimensions.

The Ising regime is characterized by the existence o
single front solution connecting the two stable states. In t
regime, for small enough diffusion ratiod5DB /DA , one
observes domain coarsening like model A of critical ph
nomena@14# or its vector order parameter analog@15#, al-
though there is no free energy functional for smalle values.
For largerd, stable stripe structures exist. Ifd exceeds a
critical value, the planar front may become unstable to tra
verse perturbations and a labyrinthine pattern will form. F
ure 3 shows a lattice-gas simulation for an asymmetric s
ation where the two bistable states do not have the s
stability. The simulation starts from a stripe of the less-sta
phase~dark gray, referred to as phase 1! in a sea of the
more-stable phase~light gray, referred to as phase 2!. The
transverse instability amplifies small fluctuations and the p
nar front krinkles. Small internal fluctuations play a neg
gible role in the subsequent evolution. The stripe folds a
then undergoes a fingering instability clearly seen in the s
ond and third panels. This process continues until the la
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5664 55ANATOLY MALEVANETS AND RAYMOND KAPRAL
rinthine pattern fills the entire periodic domain. Note that t
dark gray domain of phase 1 is connected but quite com
cated. As a result of the diffusive coupling through theB
field across the domains, whose boundaries are characte
by sharp variations of theA field, domains do not fuse an
the resulting labyrinthine pattern is stable and stationary

Microscopic structure underlies these apparently smo
chemical patterns. In Fig. 4 we show a labyrinthine patt
that formed from a random distribution with average dens
corresponding to the unstable state. Since the parameter
such that the two stable states are equivalent, the dark
light domains occupy equal areas. In addition, the patter
fragmented and the domains of one color are not fully c
nected since the random initial state evolves to disconne
patches of each phase that deform and lock into the obse
state as a result of front repulsion. The right panel show

FIG. 3. Evolution of a labyrinthine pattern from a stripe initi
condition. The concentration of speciesA is shown. Dark regions
correspond to the less-stable state. Panels~top to bottom and left to
right! correspond to times 30ks~1000 automation steps5 1ks 5
48.4!, 60ks, 250ks. Mean-field parameter values of Eq.~2! are
e50.017,a53.05,b50.146, andd54. Simulations were carried
out on a 102431024 lattice.

FIG. 4. Fully developed labyrinthine pattern. In the left pan
concentration of speciesB is shown as shades of gray. In the rig
panel an enlargement of the region marked by the white borde
presented to display the local particle distribution. Mean-field
rameter values of Eq.~2! are e50.157, a52.92, b50.0, and
d54. Simulations were carried out on a 5123512 lattice.
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magnification of one portion of the pattern where small, m
croscopic fluctuations can be seen.

In the Bloch regime thev field is displaced relative to the
u field and counterpropagating fronts exist@16,4#. This im-
plies, even for equistable states of phase 1 and phase 2
it is possible for phase 1 to consume phase 2 and vice ve
depending on the initial conditions. Consequently, if no fro
instabilities are possible, one may form arrays of travel
stripes or spiral waves. Figure 5 shows the developmen
such Bloch fronts from a quadrant of a disk of phase 1 i
sea of phase 2. The two equistable phases are color cod
phase 1~light gray! and phase 2~darker gray!. The color
coding has also been selected to display the two type
front in this regime. One sees that part of the interfac
zones are black, indicating that phase 1 consumes pha
while other parts of the interfacial zone are white, indicati
that phase 2 consumes phase 1. This is the signature of B
fronts @4#. If d is large enough to exceed the transverse
stability threshold, spiral turbulence may develop. We ha
also observed such spiral turbulence in our simulations.

In three spatial dimension more complicated patterns
possible@17#. One may find parameter regions where tubu
segments filled with the less-stable phase embedded in a
of the more-stable phase are stable. These are the th
dimensional analogs of the stable spot solutions found ea
in two dimensions@3#. It is possible to bend these tubula
regions into various shapes such as rings, links, or kn
Two factors are important in determining the stabilities
the resulting objects: the tendency for fronts to ‘‘repel’’ s
that domain fusion is prevented, and the tendency of
system to reduce the curvature in the chemical pattern. A
result of competition between these two effects it is poss
to topologically stabilize patterns. An example is given

l

is
-

FIG. 5. Evolution of patterns in Bloch regime. Intensity of gra
is proportional ton12m. ‘‘Dark’’ fronts are propagating toward
low concentration ofA and ‘‘light’’ fronts are moving toward low
concentration ofB. Panels~left to right and top to bottom! corre-
spond to times 10ks~1ks 5 95.3!, 20ks, 40ks, 1.5Ms. Mean-field
parameter values of Eq.~2! are e50.084,a54.88, b50.0, and
d50. Simulations were carried out on a 102431024 lattice.
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55 5665MICROSCOPIC MODEL FOR FITZHUGH-NAGUMO DYNAMICS
Fig. 6 which shows a stable Hopf link. Under the giv
system conditions a single ring will shrink to a stable ba
but two rings that form a Hopf link are stable since furth
shrinkage is prevented by domain repulsion.

Another example of topological stabilization is provide
by knotted patterns. Figure 7 shows a stable figure-8 k
Again the tubular domain is filled with the less-stable pha
and is embedded in a sea of the more-stable phase. Now
connectivity of the knot in conjunction with domain repu
sion prevents shrinkage to ball resulting in a stable knot
discussion of these three-dimensional patterns is given
Ref. @17#.

This brief section has simply served to demonstrate
that under appropriate conditions the microscopic FH
model is able to produce even the complex phenomeno
of the reaction-diffusion equations. As such, it may serve
a powerful, stable, simulation method to explore the p
nomena in regimes that may be difficult for direct simu
tions of the reaction-diffusion equations; for example,
complicated geometries. However, the since the model d
incorporate internal molecular fluctuations, we now turn
an exploration of the effects of such fluctuaions on the p
tern formation processes.

VI. FLUCTUATIONS AND CHEMICAL PATTERNS

In Sec. IV we showed that the macroscopic reactio
diffusion equation will adequately describe the dynamics

FIG. 6. A stable Hopf link. The concentration of speciesB is
coded by gray shades with black corresponding to high concen
tion and white to low concentration. The initial condition had t
topology of a Hopf link composed of linear tubular segmen
Mean-field parameter values of Eq.~2! are e50.0055,a55.21,
b50.329, and d54. Simulations were carried out on
25631283128 lattice.

FIG. 7. Two projections of the figure-8 knot. Mean-field para
eter values of Eq.~2! are e50.0137, a55.06, b50.202, and
d54. Simulations were carried out on a 25632563256 lattice with
slightly different diffusion rules.
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diffusion dominates reaction, so that a local equilibrium d
scription is valid. The results in the preceding section de
onstrated this numerically. It is interesting to examine t
effects of increasing the overall reaction rate, relative to t
for diffusion, to study how the macroscopic model brea
down for fast reactions. The overall reaction rate is co
trolled by the scale factorg in Eq. ~10!. The factorg gauges
the ratio of the diffusion to reaction time scales. Making th
scaling explicit the reaction diffusion equation reads,

]c~r ,t !

]t
5gR„c~r ,t !…1D¹2c~r ,t ! . ~47!

Clearly, within the description provided by this equatio
variations ing can be accounted for by the time and spa
rescalings,t̄5tg and r̄5rAg, respectively. Thus, we may
vary g at fixed system parameters,e, a, b, andd and probe
the breakdown of Eq.~47!.

A. Stationary probability distribution

Before examining pattern formation processes, we c
sider the stationary, single-site, probability distributionPnm

s

function as a function ofg. This distribution determines the
nature of the single-site reactive correlations between thA
and B species and underlies the behavior seen on lon
distance scales. Consequently, it is of interest to first ex
ine its structure.

As an example, consider system parameters corresp
ing to the symmetric bistable regime of the FHN model w
zeroB diffusion coefficient,DB50. In the simulations pre-
sented below we varyg and examine how the site probabi
ity density changes. The site probability distribution functi
was numerically computed by determining the occupanc
of all sites on the lattice after a transient period where
system was allowed to relax to the statistically station
regime.

As discussed in Sec. IV, in the limit of large diffusion th
stationary probability distribution is binomial, characteriz
by the average particle density. In the bistable regime,
mean-field model yields two stable steady states. In the fl
tuating medium noise-induced transitions between th
stable states are possible and the stationary probability
sity is bimodal with well-separated sharp maxima at t
steady states, provided transitions are rare events. In this
the stationary probability density may be approximated b
product of binomial distributions, each characterized by o
of the two steady state concentrations. The top left pane
Fig. 8 shows the numerically computed probability dens
In this simulation the dynamics in the entire spatial dom
remained in the vicinity of a single steady state and no nu
ation of the second phase or noise-induced transition p
cesses were observed. As a result the probability densi
peaked about one of the steady states and we have ve
that it is binomial to a good approximation.

In the other extreme, where diffusion is zero and sites
the lattice do not communicate, the stationary probability
determined by the stationary solution of Eq.~26!. This equa-
tion is difficult to solve analytically but from its structure on
may conclude that the distribution does not factor into
product of functions for theA andB species and it is no

a-

.
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5666 55ANATOLY MALEVANETS AND RAYMOND KAPRAL
binomial. The results of simulations are shown in the low
right panel of Fig. 8 and confirm these conclusions conce
ing the structure of the distribution. Note that it is bimod
but the density maxima do not correspond to the mean-fi
steady state values. Thus, new noisy steady states arise
the reactive correlations between the two species.

The remaining intermediate panels of Fig. 8 show the
probability density functions for various values ofg. Now
domains of the two phases exist and this is reflected in
bimodal character of the distributions. One observes tha
diffusion increases, moving from the bottom right panel
the upper left panel, the bimodal distribution seen for z
diffusion deforms and ultimately leads to the large diffusi
case described above.

B. Modification and destruction of patterns

Since, variations ing can be viewed as time and spa
rescalings in the reaction-diffusion equation, asg increases
the spatial scales of any chemical patterns will decrease
ultimately approach the mesoscopic scales where fluctua
effects begin to play a role. Also, diffusion will not com
pletely destroy the local reactive correlations. For these la
g values a number of new phenomena are possible, inclu
spontaneous nucleation of domains of one phase in the o
and fluctuation-induced alteration or even destruction
chemical patterns.

As an illustration of the effect of increasingg on chemi-
cal pattern formation consider the evolution of a labyrinth
pattern from a stripe initial condition discussed earlier. W
consider the same system parameters as Fig. 3 but nowg is
larger by a factor of 5/3. Figure 9 shows the evolution of t
labyrinth in this case. The color coding is similar to that
Fig. 3 with dark gray denoting the less-stable state and l
gray the more-stable state. One observes several new
tures in this figure. The fluctuations create domains of sup
critical nuclei of the~dark! less-stable phase. Due to the fro
instability, these deform to form segments of a labyrinth
pattern. Fluctuations may also be strong enough to fragm

FIG. 8. Stationary probability distributions for different reactio
to diffusion ratios are shown. The abscissa and ordinate of e
panel aren andm, respectively, which lie in the range@0,7#. Panels
~left to right and top to bottom! show the change of the stationa
probability distributions from a binomial distribution to a correlat
distribution determined by the stationary solution of Eq.~26!. Re-
action rate constants arek150.98,k250.1, andk350.2. Mean-field
parameter values of Eq.~2! aree50.13,a53.89, andb50.0. Pan-
els correspond to theg values$0.27, 0.45, 0.47, 0.59, 0.64, 0.97%.
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the initial linelike structure, giving rise to additional seg
ments that tend to form labyrinthine patterns. In the la
stages of the evolution, when the labyrinth occupies
space, nucleation is strongly suppressed. However, the l
rinthine pattern is not stationary as in the deterministic s
tem for these parameter values: noise induces transit
among a family of labyrinthinelike states, with segments fu
ing and breaking as a result of fluctuations.

If g is sufficiently large, fluctuations may completely d
stroy the chemical pattern. In Fig. 10 we show passage f
a labyrinthine pattern to a disordered state by scaling
reaction rate by factors of 2. When domains become t
front interfaces become diffuse and transitions that cha
the structure of the pattern become frequent. The charac
istic domain width is the same in all panels as a result
space scaling byA2. The conditionLl@1/A2d ~cf. the end
of Sec. IVA! is satisfied even when breakdown of the chem
cal pattern is observed. Thus, the breakdown is not due
violation of the condition on the diffusion relaxation time. I
the labyrinth regime the reaction-diffusion system posses
multiple steady states comprised of patterns with differ
topologies. As noise increases transitions between th
states become more frequent and the labyrinth pattern is
stroyed, although the intrinsic correlation length persists
higher noise levels.

C. Noise-induced phase transitions

We now show the relation between the breakdown of
reaction-diffusion description and noise-induced phase tr
sitions. We consider bistable media with two equista
phases. The simulations suggest the existence of two dis
types of second and first order phase transitions.

For zeroB diffusion, DB50, and large values ofe, the
density of speciesB is a fast variable and channels emplo
ing B particles may be adiabatically eliminated from the m
croscopic model. The resulting scheme possesses a fre
ergy functional. In this case the concentration of eith

ch

FIG. 9. Effect of small noise on labyrinthine pattern formatio
Parameters are identical to those of Fig. 3 but with reaction sc
by 5/3. Simulations were carried out on a 5123512 lattice.
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55 5667MICROSCOPIC MODEL FOR FITZHUGH-NAGUMO DYNAMICS
species serves as an order parameter and in the bistab
gime the transition is continuous. The transition occurs as
system becomes inhomogeneous through spontaneous n
ation events.

When the states are not well separated, or diffusion
weak, there is a high probability of the spontaneous nu
ation of long-lived domains of the second phase in the se
dominant phase. Thus, in simulations we observed that,
critical transitions, fluctuations strongly affect local statio
ary probability distributions. An essential feature of t
phase transition process is the reactive correlations betw
A andB species that build up at a node when diffusion is n
infinite. As a result, as demonstrated in Fig. 8, the site d
tribution is not binomial. These local correlations propag
to neighboring lattice nodes and are eventually destroyed
diffusion. Consequently, the character of the local fluct
tions is affected by the nature of the species site correlati
and any description of the destruction of patterns and ph
transitions must account for the buildup of these local co
lations.

Consider the evolution of the probability distribution go
erned by the Markov chain~34! with ā approximated by the
average particle density in the entire system, which
equivalent to an average over the probability distribution.
this case, the evolution of the probability density is given

P~ t11!2P~ t !5W̃„c~ t !…P~ t !, c~ t !5(
n,m

~n,m!Pnm~ t !

~48!

wherec is a vector of average species concentrations.
use the symbolW̃ for W in Eq. ~35! with ā and b̄ replaced

FIG. 10. Transition from a labyrinth to a disordered state. T
panels~left to right and top to bottom! show the results of sequen
tial scaling of reaction coefficients by factor of 2. The spatial
mensions by are scaledA2 and the results recorded at the sam
scaled time so that deviations among the panels can be ascrib
breakdown of the reaction-diffusion equation~47!. Reaction transi-
tion probabilities used in~10! arek150.98,k250.1, k350.2, and
d54.0. Panels~left to right and top to bottom! correspond to scal-
ing coefficientsg5(0.6, 1.2, 2.4, 4.8), respectively.
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by the the average concentrations ofA and B. While this
simple mean-field description of the diffusion process n
glects details of spatial correlations among sites, it corre
describes the creation of correlations at a site by reac
events. The diffusion in model is exact for an infinit
dimensional system.

The mean-field results are given by the stationary so
tions of Eq.~48!. In Fig. 11 we present the average partic
density as a function ofg. The plot shows a pitchfork bifur-
cation characteristic of second order phase transitions.
simulation points were obtained by monitoring the glob
density of speciesA as a function of time within the statis
tically stationary regime. Six points widely separated in tim
are plotted for each value ofg. Below the transition, for
large values ofg, these points are randomly distributed abo
the unstable steady state (a,b)5(1/2,1/2). Above the transi-
tion, the system switches between the two stable pha
Thus, in this region the stationary probability density
sharply peaked about the deterministic steady state val
with very small density between these density maxima.

Deviations of mean-field results from the simulations m
be attributed to the existence of long range correlations n
the critical transition. The ratio of mean-field and comp
tated gcrit values is close to that of the Ising model. Th
supports the assumption that the shift in the transition po
is due to the neglect of spatial information in the mean-fi
diffusion model. In Fig. 12 domains corresponding to diffe
ent reaction-diffusion ratios near the transition are show
The domain sizes decrease asg increases and this leads t
the above-mentioned breakdown of the mean-field desc
tion.

The microscopic model does not possess a conserved
der parameter and we expect the system to be close to m
A of critical phenomena under the conditions describ
above. In Fig. 13 we present results for the spatial correla
functions obtained during evolution from an unstable sta
Dynamical scaling results obtained from the assumption

e

to

FIG. 11. Lattice-gas simulations (1) and mean-field theory re
sults ~dotted line! for a system showing a second order phase tr
sition asg varies. The ordinate is the global density of speciesA.
System parameters are the same as in Fig. 8. The arrows ind
g values where the system spatial distribution is shown in Fig.
Simulations were carried out on a 2563256 lattice.
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curvature-driven coarsening yields a scaling exponent
0.5 @18#. In this case the scaling form is

C~r ,t !5
r

q~ t !
CS r

q~ t ! D , with q~ t !;At ~49!

whereq(t) is a characteristic domain length. The collapse
the correlation function confirms the assumed form of t
character of the coarsening.

We note that in general the FitzHugh-Nagumo mod
does not have a free energy functional and thus the co
spondence with model A is not complete. In Fig. 14 w
present results of simulations in a different regime where
mass-action fixed points are less well separated. The re
suggest the existence of a first order phase transition. In
case the plot of the average particle density does not follo
continuous path as a function ofg but displays a sharp jump

The origin of such behavior may be understood within t
mean-field approximation. The time evolution of the avera
particle density is shown in Fig. 15 for various diffusion
reaction ratios indicated by arrows in Fig. 14. For the larg
g value, g53.3, the system spirals to the stable focus
(a,b)5(1/2,1/2) ~finely dotted line in Fig. 15!. We observe
that above the first critical point, when steady state bifurca

FIG. 12. Snapshots of domains near the second order p
transition. Values of the scaling coefficientg are marked in Fig. 11
by arrows.

FIG. 13. Collapse of spatial correlation functions obtained in
course of annealing from a deep quench. System parameters ar
same as in Fig. 8 and correspond to a scaling coefficientg50.2.
f

f
e

l
e-

e
lts
is
a

e
e

t
t

s

into a stationary cycle, there are no self-consistent sta
solutions of the system~48!. In this case the average partic
density of the system oscillates around the average v
(1/2,1/2) and the stationary symmetric probability distrib
tion transforms into a rotating probability distribution aft
this Hopf bifurcation. For the two choseng values in this
region, one observes limit cycle behavior. There is a sm
amplitude limit cycle atg52.3 ~dashed line!, which grows
to a large limit cycle atg51.3 ~solid line!. Subsequently, a

se

e
the

FIG. 14. Noise-induced first order phase transition. Results
lattice-gas simulations (1) and mean-field theory~dashed line! are
displayed. The lowest~dotted-dashed line! curve shows the ampli-
tude of the mean-field density oscillations. Trajectories of me
field densities for values marked by arrows are shown in Fig.
Reaction transition probabilities used in Eq.~10! are k150.82,
k250.167, andk350.133. Mean-field parameter values of Eq.~2!
aree50.38,a51.45, andb50.0. Simulations were carried out o
a 64364364 lattice.

FIG. 15. Trajectories of the mean-field average densities c
puted from Eq.~48! corresponding to theg values$0.8, 1.3, 2.3,
3.3%. System parameters are identical with those of Fig. 14. See
for details.
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g51.2, the cycle collapses to the stable points which,
turn, evolve to the mean-field values. Evolution to the sta
focus atg50.8 is shown as a solid line in Fig. 15.

The absence of a self-consistent stationary solution of
mean-field approximation requires discussion. In a large s
tially distributed system the picture of an oscillating pro
ability density seems to be unrealistic. The cycle has fin
period and synchronization of an infinite system during o
period is improbable. Instead, there are random oscilla
patches of varying phases distributed over system. In
case the average particle density is given by the ‘‘unstab
solution of system~48!. In the spatially distributed system
undergoing bifurcation from a bistable state to a stea
cycle, the noise takes anomalously large values due to
existence of domains of different phases@19#. This accounts
for the wide distribution of the stroboscopic trajectory poin
shown in Fig. 14.

The critical phenomena discussed above do not giv
complete picture of the possible phase transitions in
model but do provide insight into the possible types of s
tem behavior. A full description must properly account f
nonlocal correlations as well as the local reactive corre
tions.

VII. SUMMARY

The two-species reaction scheme that leads to
FitzHugh-Nagumo mass-action rate law implies a local re
tive collision dynamics, which was used to investigate t
system from a microscopic point of view. The fact that t
reaction scheme depends on both the particle occupan
and their vacancies means that the scheme may be im
mented without approximation as lattice-gas automaton w
exclusion. As a result, large scale computations on para
computers are especially efficient@20# and have made fea
. T
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e

e
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e
e
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sible three-dimensional simulations of complex structu
such as links and knots@17#.

The Markov chain model that underlies the lattice-g
implementation was described and the conditions neede
yield the diffusion, mass-action, and reaction-diffusion eq
tions were discussed. These considerations also provid
means to investigate the breakdown of the macroscopic m
els.

In appropriate limits the model was shown to reprodu
the chemical patterns seen in reaction-diffsuion models w
FitzHugh-Nagumo kinetics. However, utilizing the fact th
the model is microscopic, the effects of fluctuations on p
tern formation and the breakdown of mean-field a
reaction-diffusion descriptions were studied. In particular,
the reaction rate increases relative to diffusion, the lo
equilibrium description was shown to break down. Chemi
patterns are destroyed and noise-induced phase trans
phenomena were observed. The character and order o
phase transformations depends on the parameter regime

The present paper by no means completes the stud
internal fluctuations on pattern formation processes in
dynamical system. Since the macroscopic model does no
general, possess a free energy functional, an especially
variety of phenomena are possible. We have focussed so
on the bistable regime and considered only a few exam
of pattern formation processes. Other regimes, such as
oscillatory and excitable regimes, may now be studied fr
a microscopic point of view using the model and techniqu
developed here. Through the use of such models one
gain insight into the statistical mechanics of spatially distr
uted, far-from-equilibrium, reacting systems.
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