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Microscopic model for FitzHugh-Nagumo dynamics
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A microscopic reaction model with a FitzHugh-Nagumo mass action law is introduced. A Markov chain that
uses a birth-death description of the reaction mechanism and a random walk model for diffusion is constructed
and implemented as a lattice-gas automaton. It is shown that the local particle density probability distribution
is binomial in the high diffusion limit and the average particle density is governed by the FitzHugh-Nagumo
reaction-diffusion equation. The lattice-gas simulations are able to reproduce phenomena such as labyrinthine
patterns and Bloch fronts predicted to exist on the basis of the reaction-diffusion equation. The effects of
fluctuations on these chemical patterns, the breakdown of the mass-action and reaction-diffusion descriptions,
and the existence of phase transitions in the strong reaction limit are disc[8%663-651X97)13703-5

PACS numbgs): 82.20.Wt, 05.40¢+j, 05.60+w, 51.10+y

[. INTRODUCTION struct a microscopic collision dynamics corresponding to the
mechanism and implement it in the context of a lattice-gas

The FitzHugh-Nagumo equatidi] automaton[7]. The automaton construction is described in

Sec. lll. A formulation of the stochastic Markov chain dy-

u=-uwtu-v , namics underlying the model is given in Sec. IV. In this
v.=e(U—av—B) , (1) ~ section we also discuss the conditions under which the mi-

croscopic dynamics reduces to the reaction-diffusion equa-
was originally constructed as a simple model for the excittion. In Sec. V we demonstrate that the microscopic dynam-
able behavior of nerve tissue. It mimics the behavior of thgcs can reproduce the known front bifurcation phenomena
more realistic Hodgkin-Huxley equations, and while the seen in the reaction-diffusion equation. In Sec. VI we con-
andv variables may be roughly associated with the mem-sider the effects of small fluctuations on the pattern forma-
brane voltage and ion currents, respectively, their connectiotion processes, as well as the breakdown of the reaction-
with these physiological variables is not direct. Although thediffusion equation when reaction is sufficiently fast that a
antecedents of this model lie in physiology, it has seen widelocal equilibrium description of the dynamics is no longer
spread use as a generic model that exhibits many phenomeggplicable. Noise-induced phase transitions are examined in
seen in bistable, excitable, or oscillatory chemical mediasome detail. The conclusions of this study are given in Sec.
The existence o6-shaped and linear nullclines are featuresVII.
common to many systems and allow for the possibility of a
variety of Qyna_mica}l states. !n its spatially distributed form Il. FITZHUGH-NAGUMO REACTION KINETICS
as a reaction-diffusion equation,
s ) A particular chemical mechanism is not usually associ-
u,=—u’+u-v+D,V°u , ated with FHN kinetics; in fact, the linear inhibition afby
v,=e(U—av—pB)+D, V% |, (2)  thewv variable poses problems for normal kinetic schemes.
However, it is possible to devise such a mechanism and an
it has been used to study spiral wave dynamics in excitablessential feature is its cooperative nature: the reaction steps
media[2] as well as the varied front bifurcation phenomenanot only depend on the local numbers of particles of the
[3-5] seen in recent chemical experiments on the iodidespecies but also on the numbers of vacancies or “holes”
ferrocyanide-sulfite systefi]. In this latter case the ratio of corresponding to the species.
the two diffusion coefficients plays an important role as a We consider a two-variable, site-specific, reaction scheme
bifurcation parameter. where active sites can accommodate a maximurN ool
Given this rich phenomenology, it is of interest to con- ecules of specied andB. The vacancies corresponding to
struct a microscopic dynamics whose mean-field limit is thethese species will be denoted By and B*, respectively.
FitzHugh-Nagumo equatiofil). From a knowledge of such The mechanism comprises two processes: a relaxation of the
microscopic dynamics a statistical mechanics that underliesystem toward either one of the pukestates where sites are
the pattern formation processes seen in this system may leither completely filled withA or completely empty ofj,
constructed and the effects of correlations and fluctuationand a cyclic mechanism involving coupling of theand B
on the dynamics may be studied. species. The mechanism reads
We depart from the standard interpretation of the
FitzHugh-NagumaFHN) model in terms of nerve impulse

1
physiology and devise a chemical scheme whose mass-action 2A+A" —— 3A,
law is the FHN equatior{l). The reaction mechanism and k¥
reduction to FHN kinetics are discussed in Sec. Il. We con- 2A* + A — 3A*, (39
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Using these results, the rate constants in the mechanism can

& be tuned to yield desired values of the FHN parameters.
A*+B > A+ B

(3b) lll. LATTICE-GAS MODEL
k3T l’% Once a chemical mechanism is known it is possible to
Lk . devise a microscopic reactive collision dynamics that ac-
A*"+B*— A+B counts for the steps in the mechanism. We consider the

implementation of the mechanism as a reactive lattice-gas

The cooperative kinetics arising from the dependence on thautomaton and give descriptions in terms of a Markov chain
number of vacancies as well as the number of actual molmodel in Sec. IV. Reactive lattice-gas models provide a Mar-
ecules present at a site has some features in common witfpv chain description of the dynamics. They utilize a birth-
biochemical reactions involving the cooperative binding ofdeath desc_:riptio_n of_local r_eactive events at the lattice nodes,
substrate molecules to an enzyme in a complex of allosteri@hile particle diffusion arises from the random walks the
enzymed8] or to reactions on surfaces which depend on theParticles execute on the latti¢0].
existence of vacancief®]. This reaction scheme is to be ~ We begin by introducing the notation used in the con-
interpreted in the usual sense of mechanisms for systenfruction of the model. The coordinate space for the lattice-
constrained to lie far from equilibrium, namely, feed speciesdas model is a regular Bravais latticeof elementary sites
whose values are fixed by flows of reagents into and out of - Each site is occupied by some number of particles. The
the system are not explicitly indicated and their constant conoccupation numbers of the different species are independent
centrations are incorporated in the values of the rate corPf each other so that the space of all possible site configura-
stants. Consequently, the model does not satisfy detailed bdions B is a direct product of particle statés= ® . Z , where
ance and this is responsible for its rich mean-fields, is the maximum number of states for specieg”“and
phenomenology. Zs={neZ|0=n<s}. The maximum number of molecules
Examining the mechanism, one can see that if the densitgf speciesx is N, and, henceforth, we assume tiit=N
of A particles exceeds that of the vacancies creatiol of for all x. A lattice state is a distribution of particles on the
particles prevails over creation of vacancies. The first step itattice and is given by a mappirig £— B. The space of all
Eqg. (33 supports the formation of pure phasewith sites  possible lattice states is denoted Qy=3*. The distribution
completely filled and the second step favors a situatiorof particles of only one species will be termed a lattice sub-
where sites are completely empty. In contrast to the effect oftate and we designate lattice states and substates with black-
Eq. (3a), the cyclic series of steps in E¢Bb) accounts for board bold letterge.qg., for specied\ the lattice substate is
the interaction between th& and B species and favors the A). The lattice staté. is the collection of lattice substates for
formation of site states composed of both particles and vaall speciesA, B, ...,L=(A,B, ...) andeach site/ is de-
cancies. This leads to competition between the pure bistablined by a set of site occupation numbefs=(n,m, ...),
states and gives rise to phenomena which are more comple¥here we usen for the particle number of specids m for

than simple bistability. speciesB, etc. The value of a state or substétat a lattice
The mass-action rate law that follows from E8) is pointr is designated b(r).
. N The evolution of a lattice state is governed by operators
ai={kja—ki(1-a)ja(l-a)+ky(l-a)b—k;a(l-b) acting on{). We restrict ourselves to operators defined as
=Rx(a,b), a composition of collision and translation operators. The
collision operators naturally arise from the representa-
b.=ks(1—a)(1—b)—k%ab=Rg(a,b), (4) tion of a lattice state as a mapping onfb For any site

operator o:B— B’ there corresponds a lattice operator

wherea and b are the average concentrations per site ofCs=0°L:L—B'. These operators act on each site indepen-

speciesA and B, respectively. If the rate constants satisfy dently. Interactions between sites are accomplished by trans-
k,=k% and ky=k% and one makes use of the change oflation operators which act on the lattice substates by trans-

variablesa=c,u+a, andb=c,v +b, where lating the particles in a chosen direction. Translation of a
a lattice substate in a directionv is given by

2_k2+k’{ . 1 ky+ 2k}
ki+ki' 03 kytki

1
2
Ca:§

ky+ 2K
ki+k§

S(r+v)y=7,5(r) . @)

Its action yields a change of the coordinate origin of the
2] lattice substate.

©)

ky+ k3 a
Cp= 1k2 Le2, b0=a0cb{1—(c—0

a

A. Brownian motion
and the scaled time variable=t/75, with T;1=(k1
+k¥)c2, one recovers the FHN rate la). The parameters
in (1) are related to the rate constants by

We describe Brownian motion by the collective move-
ment in a random direction of an ensemble of randomly cho-
sen particles. In some implementations of diffusion rules in

c b.—a Ka C lattice-gas .mOQeIs_particIes are assigned velocitigs and
b -0 < =8 (6) propagate in directions determined by these velocities to

a= ’ 2 . . . .
Ca Ca kp cj neighboring lattice nodes where the velocities are random-
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ized [10]. An exact solution for the linear Markov process dimensional simulations. We note that the discrete diffusion
for this scheme shows that these random walkers are effeoperatorA has nonsymmetric terms of second order in the
tively noninteracting and are binomially distributed. The lattice spacing.

model used here is different and makes use of an auxiliary

“excited” particle lattice substat& and simulates diffusion B. Reactive dynamics

by a three-step algorithnfa) transfer of at most one particle _ . . -
per site to the excited state with a probability depending on W& NOW construct a two-species microscopic collision

the site occupation numbe(h) translation of the excited mpdel which will be sh_own n Sec. IV 1o lead to t.he
particles in a random direction chosen from a SetF|tzHugh-Nagumo equations in the Boltzmann approxima-

V={vy, ... v}, (c) accommodation of the excited particles tir(])n. ﬁ\s lea_rlier, we label species As%blatticesfb)andB S0 d
at new positions. The fact that only a maximum Nfpar- that the lattice state is given liy=(A,B) (apart from excite

ticles of each species may reside at a néaelusion prin- sublattice states used in the diffusion pulEach site is de-
ciple) requires a vacancy to exist at a site in order to be abld"€d by thi set of occupfano? va|r|ablﬁ,ff$(n,m) wheren
to accommodate a particle from the excited sublattice; iffdm are the numbers of molecules of specteandB ata
addition, we cannot create an excited particle from thesite. The reaction rule is parrled out by_randomly choosing
vacuum, so that we have two restrictions on the excitatioP"€ Of ther=6 channels in the mechanis8 where each
probability: p(N)=1 and p(0)=0. We shall show in the chgnnel is _a55|gned an equal weight. A re_actlve e_vent re-
Sec. IV that the choice of a linear dependence of the excitadUirés & pair of random numbers, ¢), where¢ is a continu-
tion probability on the site occupation number leads to &US: uniformly distributed, random number on (0,1) ane
concentration independent diffusion coefficient. a discrete, uniformly distributed, random number on
Consider the Brownian motion of particles of specfes {1} ) ) ,
The lattice state comprises substates of spe&ijel, and the The local reactive dynamics at a node occurs by birth-
auxiliary “excited” state specieg, E. Formally, if the maxi- death processes arising from the 6 steps in the reaction

mum occupation number i, the above algorithm may be mechanism. The reaction probabilitis corresponding to

expressed as the composition of three operators each of these six steps are
D=C,T,°C, (8) p1(n,m)=ykn(n—1)(N—-n),
where 7, is a translation of the lattice substdiein a ran- p2(n,m)= yk_’l‘n(N—n)(N—l—n),
domly chosen direction, while C, andC,, are lattice opera- o o
tors corresponding to the following site operators: ps(n,m)=yk,(N—n)m, p4(n,m)=ykin(N—m),
n,e)=(n—0(n—N¢),0(n—Né¢)), n,e)=(n+e,0), Tx T
rn === AN aO=ITERS potnm)= kS (N=m)(N=m),  po(n,m) = ykgnm,

(10

where 6(x) is the Heaviside functionn is the number of . :
molecules of speciea at a site, and is a continuous, uni- wherey is a scale factor that controls the overall time scale
’ ’ of the reaction process and;=k;/[(N—1)(N—2)],

formly distributed, random variable on (0,1). The operator—

7in Eq. (9) corresponds to stef@) and transfers a particle to K1 =Ki/[(N—1)(N—=2)] andk;=k; /N and k" =k"/N for

the excited state while the operaterplaces an excited par- |=2,3 wherek; andk{" are the reaction rate coefficients de-

ticle in a new position determined by the action of the transfined earlier. In writing this set of probabilities we have la-

lation operator. The algorithm is well defined since at eactbeled the stepg=[1,6] in the reaction mechanism charac-

step the occupation number of each species is no greattgrized byk; and ki as follows: j=2i—1 for reactions

than N and is nonnegativefi<A on the first step and labeled byk; and j=2i for reactions labeled bk . Site

E<1/AA<N on the last. operators corresponding to the different channels are easily
In the Sec. IV we shall show that when correlations be-written in terms of these reaction probabilities and are given

tween sites are neglected the above scheme leads to an idmlow

tropic diffusion equation. The isotropy does not arise from

the symmetry of the underlying lattice but is a property of ai(n,m)=(n+06(p;—§),m) ,

the Laplacian operator in the diffusion equation. Due to this

feature it suffices to consider a random walk on a square aa(n,m)=(n—0(p2—§),m) ,

lattice for two dimensions and on a cubic lattice for three

dimensions. However, in the presence of correlations this az(n,m)=(+6(pz—£),m) ,
isotropy can be broken and to regain it one should utilize

lattices with symmetry groups larger than those of cubic lat- os(n,m)=(n—0(ps—&),Mm) ,
tices; e.g., the triangular lattice for two-dimensional systems

and the projection of the four-dimensional fcc lattice for os(n,m)=(n,m+6(ps—¢&)) ,

three-dimensional problenid1]. In simulations reported in

this paper we used a cubic lattice and a set of directions from og(n,m)=(n,m—0(pg—&)) .

a four-dimensional fcc lattice for the three-dimensional com-
putations and a nine-direction scheme, obtained by projece note that all of the operations are legitimate in the fol-
ing the fcc velocity directions on a plane, for two- lowing sense: if the reaction rule creates a particle, a vacancy
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exists; if a particle was destroyed, it existed prior to destruc- 1
tion. The local reaction rule has the following site operator (M)(r,t+1)—(n)(r,t)= 55 > [ny(r',H—(n)(r,0)]
expression: r'eMn

1
6 =oan2 AP 15

P(”=m)=21 8,oi(n,m) (11) 2an (MY (15
|=

whereA is a discrete Laplacian operator. This is just a dis-
andC, is the corresponding lattice operator b (A,B). An  crete version of the diffusion equation with diffusion coeffi-
important feature of the above scheme is that the reactiveientD=1/2dN.
transitions among molecules and vacancies are such that the The stationary probability distribution of E¢L2) is bino-
exclusion principle is satisfied automatically. mial. To show this it is convenient to consider the generating
function[12] of the distribution

IV. SITE MARKOV CHAIN DESCRIPTION

N
The lattice-gas rules constitute a Markov chain descrip- F(x,r,t)= E P.(r,t)x" . (16)
tion of the dynamics on the finite lattice. In order to analyze n=0
the model in some detail we make the approximation that the, . . - )
full probability distribution is the product of single site prob- %Jsmg this definition and E¢12) we find
ability distributions. For reaction, no approximation is in- FOGHt+1)—F(Xr,t)
volved since reactions occur independenly on each lattice =’ v
node. Correlations arising from exclusion are neglected in

e _ 1- _ d
the diffusion rule, but we shall demonstrate that these are :{ —a(l—x)+( X)[l—a(l—x)]—]F(x,r,t) .
numerically small by comparison with simulation results. N IX 17
A. Diffusion Markov chain The stationary, spatially homogeneous, generating func-

We now show that the evolution of the average particletion F(x) is given by the solution of
density defined by the Brownian motion algorithm is ap- (1-%)
proximated by a diffusion equation. In the analysis we as- —X d _
sume that there is no correlation between lattice sites; hence, |_"’1(1_X)+ N [1—a(1—x)]&] F(x)=0,
the probability distribution function is equal to a product of (18
reduced site probability distributions. This assumption will
be verified below by comparison with simulations. Letwhich isF(x)=[1—a(1—x)]", with a=(n)/N. This is the
P,(r,t) be the probability of findingn molecules of species generating function for a binomial distributiorpﬁ
A at the siter at timet. The evolution of the reduced prob- =()a"(1—a)N™".
ability density is described by the following Markov chain The above analysis hinges on the approximation that the

distribution function for the lattice is the product distribution
_ _ D over lattice sites. Consequently, it is of interest to compare
Po(rut+1)=Pa(r.t) % Wor (NP (0, (12) the site distribution function obtained by direct simulation of
the diffusion rule, which makes no assumption about inde-
where, using the random walk rule outlined in Sec. Il A, pendence or correlations, with that predicted from the Mar-

Wﬁn,(r) is given by kov chain(12). The results of numerical simulations show
that correlations among sites are negligible over the entire
b n’ _n’ range of average particle densities and that the stationary

Wi, =al 1- W) Snrn-1+(1=8) 7 Onr n+1 distribution is well described by a binomial distribution. By

analogy with the expression for the factorial cumulants of a

n’ discrete random variable one may construct an expression
Efl_ N On' n» (13 for the generating function that gives only one nonvanishing
cumulant for a binomial distribution. For the function

which depends on the average density in the neighborhood of

!

.
+(1—a)ﬁ

the pointr, - x!
P V@0 -1=3, )7 19
_ 1 1
n(r,H= 2d, E NP(r ’t)zﬁr,z (Mo the first factorial cumulant is equal to the average density

r'eMr) N e Mr)

(14  and for a binomial distribution the other cumulants are zero.
o . In the limit N— the above expression is proportional to the
(d is the dimensionalitywith a(r,t)=n(r,t)/N. [We have standard expression for the factorial cumuldd®. Compu-
dropped the arguments @afr,t) for notational simplicity}  tations yield the following values for the cumulants:
Multiplying Eq. (12) by n and summing om we obtain an  {(n));=0.35, ((n)),=8.5x10"°, and ((n));=2.2x10"*
equation for the evolution of the expectation value of theconfirming that correlations are indeed small. In Fig. 1 cu-
particle number mulants computed over a range of average densities are com-
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of dw(X)
0.04 T ; T T —— =Na—e UN_ 2
(N)()==7;lz-0=Na—e ™M —"= (25
x=0
0.03 - ~ N _
where we used conditiofh|,_,=1, which must always be
0.02 i imposed on a generating function of a probability distribu-
‘ tion.
' The characteristic diffusion length, associated with the
0.01 - ] relaxation time JAY|=N is L,=\DN or, noting that
e D=1/2dN, L,=1/J/2d which is of the order of a lattice
0 - o L T spacing. anseque_ntly_, the system v_viII quickly relax to a
I ! ! 1 local binomial distribution and one will be able to resolve
0 02 04 06 08 1 phenomena on the spatial scale of the lattice maintaining this

local binomial distribution. This result will be used in the

, _ subsequent analysis.
FIG. 1. Second ©) and third (+) cumulants compared with

their theoretical valueg(1—a)/N (solid line) and a(2a—1)(a . .
~1)/N? (dotted line. B. Reaction Markov chain

The microscopic, single-site, reaction dynamics can be
pared with cumulants of a binomial distribution. The valueswritten as a Markov chain. Le®,,(t) be the probability of
coincide for all average particle densities. finding n molecules of specie& andm molecules of species

It is important to determine how quickly a binomial dis- B at a site. In view of the birth-death description of the

tribution is established at a node and to do this one needs aeaction process at a site this probability satisfies the evolu-
estimate of the relaxation eigenvalues of the transition matrixion equation,
of the Markov chain. We suppose that the average density of
the neighboring sites is fixed at the valaeand study the

- = R rm’
evolution of the site probability density to a binomial distri- Pan(t+1) = Pom(t)= 2 Wi m Parme (1), (26)

bution with densitya. Using the continuous-time version of o
Eq. (17) with a(r,t)=a and making the change of variable where
z=1-x andF(x,t)=f(z,t) we have
R ’ ! ’ !
ﬁf(z t) 7 & an’n’m/:(pl(nl m )+p3(nl m ))5n,n’+15m'm
g - |aFtragg g (f@y o (20 +(P2(n,' M) +pa(n,' M)y - 18mm
Equation(20) is equivalent to the following system of ordi- +Ps(N',M") Sy nSmmr +1
nary differential equations: +pg(n', M) 8 nOmmr—1
(1-azz r
=1, z=—yg— . fu.=-azf, (2D - ;1 pi(n" .M | 8y 0 m - 27

with initial conditions atu= 0 constrained by a curve param-

: h To obtain the generating function for the reaction we use the
eterized by variablg

procedure described earlier for the diffusion model. There
are two major differences: first, the distribution function for

reaction cannot be factored into a product of distribution
functions for theA andB species and second, due to absence
of site interactions, the equation for the stationary distribu-
tion function is linear. The generating function for the prob-

ability distribution function is

t=0, z=¢, f=w()(A-a))V . (22

Solution of the system of equatio3l) passing through the
surface(22) is

az M ag
=, n l1-az :N+ : 1-af) "’
FOLY.D= 2 Pog(OXy™ (28)
In(f)=NIn(1-az)+w({) . (23 0=n,m=N

Each reaction channel provides a contribution to the evolu-
tion equation for the generating function and using Eg6)
and(28) we find

Elimination of the variableg. and{ from the above system
gives the following solution of Eq.20):

z
expt/N)(1—az)+az

. (29 6
F(x,y,t+1)—F(x,y,t)=zl chix,y,tH)=C(x,y,t), (29
=

From this equation we may read off the second largest ei- _
genvaluer D= — (1/N). The average particle number relaxes whereC)(x,y,t) is the contribution from channgl Com-
to a stationary value as puting these reactive terms explicitly we find

f(z,t)=(1—az)Nw(
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_ = L E
C(x,y)=ky(1—x)xN** XN_X}Z +kE(1—x)xN —szf 1 , | |
: ” 0.8 - i
_ = L .
+k2(1—X)XN+ly = _k;(l_X)yNJrl _N}
X y 0.6 |
Xy Xy
a
Kaql * N+1 04 F ]
Tha(1-y)xFyy =Kz (1=y)(Xy)" 7| ——n| -
(yx)™],,
0.2 i
(30
R S
0 ! 1 |
The rates of change of the average particle densities are -4 -2 c?k kz) 6
1= M

given by a(t+1)—a(t)=C(1,1t)/N and b(t+1)—b(t)
=Cy(1,1t)/N. The condition for the probability distribution o ) _
function to be a stationary distribution function is tantamount G- 2. Steady state densities in the bistable regime as a func-
to the condition that the sum of all reaction terms vanish ion of the rate coefficient differende, —ki . The line represents
Equation(30) is quite difficult to solve analytically and it is "€ FHN mass-action model and the points correspond to the “A”
more rewarding to solve the underlying linear system forpartlcle (_jensmes from simulations. Parameter values of £a:or-
P,... We shall return to this expression in Sec. IV C as well©SPoNding toki=kj are €=0.127, «=5.12, and=0.0. The

; . . ; . X
as in Sec. VI where the breakdown of the mean-field an |mulat!qn results were obta|.ned b.y varyiRg—k; frqm negative

. : . . 0 positive values. The simulations were carried out on a
reaction-diffusion results are considered.

. . S 23X 23x 23 lattice. The scaling constart for the abscissa is
If one assumes diffusive mixing is strong, so that the sys.._g 147

tem is spatially homogeneous and the distribution is a prod-

uct Qf bino_mial distribution; for thé\ andB_ species_, Eq. C. Reaction-diffusion equation
(30) is easily evaluated. Using the generating function for a ) ) L .
binomial distribution function we have In the independent-site approximation, the Markov chain

describing both reaction and diffusion is obtained by com-
N \ bining the reaction and diffusion steps described individually
F(x,y)=(1+a(x=1))"(1+b(y=1))" . (31)  above. The Markov chain may be written in matrix form as

— D R
Substituting this expression into E¢30) and evaluating P(rt+1)=(WEH (YW DP(r,D (33

the derivatives, we find C,(1,1t)/N=Ra(a,b) and \here the parametey can be used to gauge the relative
Cy(1,1t)/N=Rg(a,b), whereR,(a,b) andRg(a,b) are the  magnitudes of the reaction and diffusion time scales. If both
mass-action rates given in E(). Thus, we verify that the giffusion and reaction probabilities are small, we may ex-
maSS-aCtion rate IaW iS found in th|S Strong diffusion ||m|t pand the matrix product to |inear order to Obtain’
when reactive correlations at a node are neglected.

We may confirm that the microscopic model yields resultsP(r,t+1)—P(r,t)= (WP + yWRYP(r,t)=WP(r,1), (34
in agreement with the mass-action rate law in the strong
diffusion limit. In Fig. 2 we compare the stationary averageWhere the elements o&/ are
densities obtained from simulations of the lattice-gas mode| D D R
with those obtained from the mean-field equations. TheVnmn'm'=Wyn/Omm +Weny Onnr + YWopy iy - (39
mean-field steady states are given by stationary solutions
Eqg. (4). The reaction rate difference expressed as a functi
of average density may be written as follows:

O%n estimate of the reaction time scale may be obtained from
the eigenvalues of the birth-death processes described by the
matrix WR as follows:

IWRgill _ _ [[WFgl|
gl 19l

where g; is an eigenvector labled by the ind¢xand the
This equation yields a van der Waals loop. As the relativeyector norm”.” may be chosen in any convenient way. For
stability of the stable statesiefined by the difference in rate a vector norm||(xy, . .. xn)||==|x|, the corresponding
coefficientsk, —k3) changes, the system undergoes a firstmatrix form is
order phase transition. The position of the transition is de-
fined by the analog of a Maxwell rule and in this case cor-
respon(}j/s to equalg rate coefficients. The simulation results ||W||=ma>q2i |W”|' (37
were obtained by varying,—kj from negative to positive
values while keepings, +kj constant. We observed hyster- The chemical relaxation time determined |, the largest
esis when Varying(l—k’l‘ from positive to negative values. chemical relaxation rate, should be slower than that corre-
The average steady state densities are in good agreemesionding to the diffusion relaxation eigenvalng ; thus,
with the mass-action law results. [[WRI[/IND]=N||WR||<1.

2k
k,—Kf=(2a—1) kl+k’1‘—a(1—_2a) . (3 INfI=

=[IWql, (38
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Diffusion tends to homogenize the system; it breaks thehe deviations from the local binomial distribution. Consid-

correlations between th& and B species induced by reac-

ering the local densities as fixed parameters on the fast time

tion and leads to a local binomial distribution of molecules atscale of relaxation ofP, the solution of Eq(43) subject to
a site. Provided the chemical reaction is a slow process onthe initial condition®(t=0)=Sis
might expect the site distribution to be approximately bino-

mial, characterized by the local particle density. In view of

this we may construct the analog of a normal solufib8] to
the Markov chain(34). We write the full distribution as the
sum of a binomial distribution plus a correction term

P(r,t)=pB(c(r,t))+ yd(r,t) , (39
where

pE(c(r,t)=p2(@(r,t)pE(b(r,1) , (39)

is a product of binomial distributions for the two species
characterized by their local densities. The local densities

t
cp(r,t):_EO (1+WP)is . (46)
=

The characteristic relaxation rate f&¢° in this equation is
\? so that deviations from the local binomial distribution
relax rapidly and the reaction-diffusion description will be
valid providedN||WR||<1 as discussed above.

V. MICROSCOPIC SIMULATIONS
OF CHEMICAL PATTERNS

In Sec. IV we demonstrated that the microscopic dynam-

c(r,t)=(a(r,t),b(r,t)) are as yet unknown quantities. The ics reduces to the reaction-diffusion equation if relaxation to

function ® and the densities are determined from E2f)
and the solvability conditions

> md,,=0 .

n,m

2 ®yn=0, E n®,,=0 , (40
nm mm

the local binomial distribution is rapid compared to chemical
and diffusion time scales and the distribution function is ac-
curately represented by a product of binomial distributions
characterized by the local species densities. If these condi-
tions are met fluctuations and correlations will be small and
the spatial and temporal scales of the phenomena of interest

Substituting Eq(38) into Eq. (34) and using the solvability \yj|| pe large compared to microscopic scales, such as the
conditions leads to equations for the local densities to ordefyttice spacing or the discrete time step. In this regime we

Y
a(r,t+1)—a(r,t)=DpAa(r,t) +Ru(c(r,t))

b(r,t+1)—b(r,t)=DaAb(r,t)+Rg(c(r,t)) . (41

expect the microscopic simulations to reproduce results ob-
tained by the reaction-diffusion equation, and this serves as a
test of the microscopic model in this limiting regime. In this

section we demonstrate that a number of different types of
patterns predicted to exist on the basis of the reaction-

This is just the reaction-diffusion equation where the reac_diffusion equation are observed in simulations of the micro-

tion fluxes are given by

Ralc(r,t)= 2 nWh .pE .

nmn’m’

Re(c(r,t)= X

nmn’m’

m (42

B
nm,n’m’pn’m’ '

and have the same mass-action forms given earlier. Scali
of space, time, and concentration variables gives the

FitzHugh-Nagumo reaction-diffusion equation.

The deviations from the binomial distribution and the re

laxation to it can be found by computir® which satisfies
the equation,

®(r,t+1)—P(r,t)=WPd(r,t)+S(r,t) , (43
where
apB
S(r,t)=<WRpB—%-R) (44
Note that
> NSp=2 M§p=0 . (45

n,m n,m

scopic model.
The phenomenology of the FHN reaction-diffusion equa-
tion is very rich: it possesses regimes of excitability, oscilla-
tions and bistability and their associated wave processes.
Rather than reproducing all of this behavior, which we have
verified can be examined in the context of the microscopic
model, we focus on the bistable regime. Within this bistable
regime we further limit our demonstrations to three ex-
amples: Ising and Bloch fronts in two spatial dimensions and
"Gable knots and links in three dimensions.
The Ising regime is characterized by the existence of a
single front solution connecting the two stable states. In this
“regime, for small enough diffusion ratié=Dg/D,, One
observes domain coarsening like model A of critical phe-
nomena[14] or its vector order parameter analptp], al-
though there is no free energy functional for smallalues.

For larger 8, stable stripe structures exist. & exceeds a
critical value, the planar front may become unstable to trans-
verse perturbations and a labyrinthine pattern will form. Fig-
ure 3 shows a lattice-gas simulation for an asymmetric situ-
ation where the two bistable states do not have the same
stability. The simulation starts from a stripe of the less-stable
phase(dark gray, referred to as phase ih a sea of the
more-stable phas@ight gray, referred to as phase. Z'he
transverse instability amplifies small fluctuations and the pla-
nar front krinkles. Small internal fluctuations play a negli-
gible role in the subsequent evolution. The stripe folds and

Thus, nS,,, and mS,,,, are reactive flux deviations whose then undergoes a fingering instability clearly seen in the sec-
means are zero. These fluxes act as source terms that drivad and third panels. This process continues until the laby-
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FIG. 3. Evolution of a labyrinthine pattern from a stripe initial
condition. The concentration of specié@sis shown. Dark regions
c_orrespond to the Iesg-stable state. Pafte[sto _bottom and left to low concentration ofA and “light” fronts are moving toward low
right) correspond to times 30k4.000 automation steps 1ks = o centration oB. Panels(left to right and top to bottoincorre-

48.4, 60ks, 250ks. Mean-field parameter values of E2). are  nong 1o times 10kélks = 95.3, 20ks, 40ks, 1.5Ms. Mean-field
€=0.017,a¢=3.05,8=0.146, and5=4. Simulations were carried parameter values of Eq2) are e=0.084, «=4.88, 3=0.0, and

out on a 10241024 lattice. 5=0. Simulations were carried out on a 1024024 lattice.

FIG. 5. Evolution of patterns in Bloch regime. Intensity of gray
is proportional ton+2m. “Dark” fronts are propagating toward

rinthine pattern fills the entire periodic domain. Note that the
dark gray domain of phase 1 is connected but quite compli
cated. As a result of the diffusive coupling through te

field across the domains, whose boundaries are characterizadf

by sharp _variation_s Of. thé field, QOmains do not que and plies, even for equistable states of phase 1 and phase 2, that
the r_esultlng _Iabyrmthme pattern is stable and stationary. it is possible for phase 1 to consume phase 2 and vice versa,
Microscopic structure underlies these apparently Smoou@iepending on the initial conditions. Consequently, if no front

chemical patterns. In Fig. 4 we show a labyrinthine patterm,qapijities are possible, one may form arrays of traveling
that formed from a random distribution with average density,

. ) stripes or spiral waves. Figure 5 shows the development of
corresponding to the unstable state. Slnc_:e the parameters a&ch Bloch fronts from a quadrant of a disk of phase 1 in a
such that the two stable states are equivalent, the dark a

.Sea of phase 2. The two equistable phases are color coded as
Phase 1(light gray) and phase Zdarker gray. The color

dsi h dom initial | di coding has also been selected to display the two types of
nected since the random initial state evolves to disconnected -+ i this regime. One sees that part of the interfacial

patches of each phase that deform and lock into the observ nes are black, indicating that phase 1 consumes phase 2,

state as a result of front repulsion. The right panel shows g e other parts of the interfacial zone are white, indicating

that phase 2 consumes phase 1. This is the signature of Bloch
fronts [4]. If & is large enough to exceed the transverse in-
stability threshold, spiral turbulence may develop. We have
also observed such spiral turbulence in our simulations.

In three spatial dimension more complicated patterns are
possibleg[17]. One may find parameter regions where tubular
segments filled with the less-stable phase embedded in a sea
of the more-stable phase are stable. These are the three-
dimensional analogs of the stable spot solutions found earlier
in two dimensiong3]. It is possible to bend these tubular
regions into various shapes such as rings, links, or knots.

FIG. 4. Fully developed labyrinthine pattern. In the left panel TWO factors are important in determining the stabilities of
concentration of specied is shown as shades of gray. In the right the resulting objects: the tendency for fronts to “repel” so
panel an enlargement of the region marked by the white border ighat domain fusion is prevented, and the tendency of the
presented to display the local particle distribution. Mean-field pa-System to reduce the curvature in the chemical pattern. As a
rameter values of Eq(2) are e=0.157, «=2.92, 8=0.0, and result of competition between these two effects it is possible
5=4. Simulations were carried out on a 54812 lattice. to topologically stabilize patterns. An example is given in

magnification of one portion of the pattern where small, mi-
croscopic fluctuations can be seen.

In the Bloch regime the field is displaced relative to the
ield and counterpropagating fronts exj46,4]. This im-

fragmented and the domains of one color are not fully con
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diffusion dominates reaction, so that a local equilibrium de-
scription is valid. The results in the preceding section dem-
onstrated this numerically. It is interesting to examine the
effects of increasing the overall reaction rate, relative to that
for diffusion, to study how the macroscopic model breaks
down for fast reactions. The overall reaction rate is con-
trolled by the scale factoy in Eq. (10). The factory gauges
the ratio of the diffusion to reaction time scales. Making this
scaling explicit the reaction diffusion equation reads,

FIG. 6. A stable Hopf link. The concentration of speckss ge(r,t) = yR(c(r 1))+ DV2¢(r,t) (47)
coded by gray shades with black corresponding to high concentra- at ' ' '
tion and white to low concentration. The initial condition had the
topology of a Hopf link composed of linear tubular segments.Clearly, within the description provided by this equation,
Mean-field parameter values of E(R) are e=0.0055,a=5.21,  variations iny can be accounted for by the time and space
B£=0.329, and 5.=4. Simulations were carried out on a rescalings,t_zty andr_=r\/§, respectively. Thus, we may
256X 128x 128 lattice. vary vy at fixed system parameters, «, 8, and 8 and probe

the breakdown of Eq47).
Fig. 6 which shows a stable Hopf link. Under the given a4

system conditions a single ring will shrink to a stable ball, ) S
but two rings that form a Hopf link are stable since further A. Stationary probability distribution

shrinkage is prevented by domain repulsion. Before examining pattern formation processes, we con-
Another example of topological stabilization is provided sider the stationary, single-site, probability distributiBf,,

by knotted patterns. Figure 7 shows a stable figure-8 knotynction as a function of. This distribution determines the
Again the tubular domain is filled with the less-stable phaseature of the single-site reactive correlations betweenAthe
and is embedded in a sea of the more-stable phase. Now thgq B species and underlies the behavior seen on longer
connectivity of the knot in conjunction with domain repul- gistance scales. Consequently, it is of interest to first exam-
sion prevents shrinkage to ball resulting in a stable knot. Ane its structure.

discussion of these three-dimensional patterns is given in ag an example, consider system parameters correspond-

Ref.[17]. _ _ ing to the symmetric bistable regime of the FHN model with
This brief section has simply served to demonstrate thajeroB diffusion coefficient,Dg=0. In the simulations pre-

that under appropriate conditions the microscopic FHNsented below we vary and examine how the site probabil-
model is able to produce even the complex phenomenologyy density changes. The site probability distribution function
of the reaction-diffusion equations. As such, it may Serve agyas numerically computed by determining the occupancies
a powerful, stable, simulation method to explore the pheys )| sites on the lattice after a transient period where the

nomena in regimes that may be difficult for direct simula-gystem was allowed to relax to the statistically stationary
tions of the reaction-diffusion equations; for example, iNregime.

complicated geometries. However, the since the model does "ag giscussed in Sec. IV, in the limit of large diffusion the

incorporate internal molecular fluctuations, we now tum tOgiationary probability distribution is binomial, characterized
an explorat_lon of the effects of such fluctuaions on the Patpy the average particle density. In the bistable regime, the
tern formation processes. mean-field model yields two stable steady states. In the fluc-
tuating medium noise-induced transitions between these
VI. FLUCTUATIONS AND CHEMICAL PATTERNS stable states are possible and the stationary probability den-

n's IV h d that th . . sity is bimodal with well-separated sharp maxima at the
N oec. we showed that the macroscopic rea(.:t'on'steady states, provided transitions are rare events. In this case
diffusion equation will adequately describe the dynamics if

the stationary probability density may be approximated by a
product of binomial distributions, each characterized by one
of the two steady state concentrations. The top left panel of
Fig. 8 shows the numerically computed probability density.
In this simulation the dynamics in the entire spatial domain
remained in the vicinity of a single steady state and no nucle-
ation of the second phase or noise-induced transition pro-
cesses were observed. As a result the probability density is
peaked about one of the steady states and we have verified
that it is binomial to a good approximation.

In the other extreme, where diffusion is zero and sites on

the lattice do not communicate, the stationary probability is

FIG. 7. Two projections of the figure-8 knot. Mean-field param- determined by the stationary solution of Eg6). This equa-
eter values of Eq(2) are e=0.0137, «=5.06, 8=0.202, and tion is difficult to solve analytically but from its structure one
5=4. Simulations were carried out on a 26856x 256 lattice with ~ may conclude that the distribution does not factor into a
slightly different diffusion rules. product of functions for theéd and B species and it is not
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FIG. 8. Stationary probability distributions for different reaction
to diffusion ratios are shown. The abscissa and ordinate of each
panel aren andm, respectively, which lie in the rang®,7]. Panels
(left to right and top to bottomnshow the change of the stationary
probability distributions from a binomial distribution to a correlated
distribution determined by the stationary solution of E2f). Re-
action rate constants akg=0.98,k,=0.1, andk;=0.2. Mean-field
parameter values of E¢R) aree=0.13,a=3.89, and3=0.0. Pan-
els correspond to the values{0.27, 0.45, 0.47, 0.59, 0.64, 0J97

X

N

FIG. 9. Effect of small noise on labyrinthine pattern formation.
Parameters are identical to those of Fig. 3 but with reaction scaled

. . . . . by 5/3. Simulations were carried out on a X212 lattice.
binomial. The results of simulations are shown in the lower

right panel of Fig. 8 and confirm these conclusions concernthe initial linelike structure, giving rise to additional seg-
ing the structure of the distribution. Note that it is bimodal ments that tend to form labyrinthine patterns. In the late
but the density maxima do not correspond to the mean-fieldtages of the evolution, when the labyrinth occupies all
steady state values. Thus, new noisy steady states arise fr@pace, nucleation is strongly suppressed. However, the laby-
the reactive correlations between the two species. rinthine pattern is not stationary as in the deterministic sys-
The remaining intermediate panels of Fig. 8 show the sitaem for these parameter values: noise induces transitions
probability density functions for various values ¢f Now  among a family of labyrinthinelike states, with segments fus-
domains of the two phases exist and this is reflected in thang and breaking as a result of fluctuations.
bimodal character of the distributions. One observes that as If y is sufficiently large, fluctuations may completely de-
diffusion increases, moving from the bottom right panel tostroy the chemical pattern. In Fig. 10 we show passage from
the upper left panel, the bimodal distribution seen for zerca labyrinthine pattern to a disordered state by scaling the
diffusion deforms and ultimately leads to the large diffusionreaction rate by factors of 2. When domains become thin

case described above. front interfaces become diffuse and transitions that change
the structure of the pattern become frequent. The character-
B. Modification and destruction of patterns istic domain width is the same in all panels as a result of

. o : : space scaling by/2. The conditionL,>1/y2d (cf. the end
Since, variations iny can be viewed as time and space of Sec. IVA) is satisfied even when breakdown of the chemi-

[ﬁ:csl'gt?; ?C;Teesrgfgaonéﬂgfrﬂfég? Z?é?ﬂgnv’vﬁﬂgﬁg‘:g: anC | pattern is observed. Thus, the breakdown is not due to a
P y P jolation of the condition on the diffusion relaxation time. In

ultimately approach the mesoscopic scales where fluctuatiO{p‘e labyrinth regime the reaction-diffusion system possesses

e}‘gig}s (?:S{'rg tct’hgl?gcg rrg;%tiisgér(rj(laflf:t?clz?\g Vl\é'grr:ﬁéscgg; multiple steady states comprised of patterns with different
P y Y ' g?opologies. As noise increases transitions between these

¥ values a number of new phenomena are possible, InCIudIngtates become more frequent and the labyrinth pattern is de-

;ﬁgﬁ?ﬁgﬁ;ﬁoﬂ;ﬂziﬁg 0;?(;2?(;?5 8: %r:/zEhg:;;z;gsno'[gg{royed, although the intrinsic correlation length persists to
igher noise levels.

chemical patterns.

As an illustration of the effect of increasingon chemi-
cal pattern formation consider the evolution of a labyrinthine
pattern from a stripe initial condition discussed earlier. We We now show the relation between the breakdown of the
consider the same system parameters as Fig. 3 butyn@w reaction-diffusion description and noise-induced phase tran-
larger by a factor of 5/3. Figure 9 shows the evolution of thesitions. We consider bistable media with two equistable
labyrinth in this case. The color coding is similar to that in phases. The simulations suggest the existence of two distinct
Fig. 3 with dark gray denoting the less-stable state and lightypes of second and first order phase transitions.
gray the more-stable state. One observes several new fea- For zeroB diffusion, Dg=0, and large values of, the
tures in this figure. The fluctuations create domains of superdensity of specie8 is a fast variable and channels employ-
critical nuclei of the(dark) less-stable phase. Due to the front ing B particles may be adiabatically eliminated from the mi-
instability, these deform to form segments of a labyrinthinecroscopic model. The resulting scheme possesses a free en-
pattern. Fluctuations may also be strong enough to fragmemdrgy functional. In this case the concentration of either

C. Noise-induced phase transitions
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FIG. 11. Lattice-gas simulationsH) and mean-field theory re-
sults (dotted ling for a system showing a second order phase tran-
sition asy varies. The ordinate is the global density of spedes

FIG. 10. Transition from a labyrinth to a disordered state. TheSystem parameters are the same as in Fig. 8. The arrows indicate
panels(left to right and top to bottomshow the results of sequen- 'yajues where the system spatial distribution is shown in Fig. 12.
tial scaling of reaction coefficients by factor of 2. The spatial di- gjmylations were carried out on a 28@56 lattice.

mensions by are scaled2 and the results recorded at the same
scaled time so that deviations among the panels can be ascribed
breakdown of the reaction-diffusion equati@tv). Reaction transi-
tion probabilities used i10) are k;=0.98,k,=0.1, k;=0.2, and
5=4.0. Panelgleft to right and top to bottomcorrespond to scal-
ing coefficientsy=(0.6, 1.2, 2.4, 4.8), respectively.

6?/ the the average concentrations Afand B. While this
simple mean-field description of the diffusion process ne-
glects details of spatial correlations among sites, it correctly
describes the creation of correlations at a site by reactive
events. The diffusion in model is exact for an infinite-
species serves as an order parameter and in the bistable fimensional system.
gime the transition is continuous. The transition occurs as the The mean-field results are given by the stationary solu-
system becomes inhomogeneous through spontaneous nucii@ns of Eq.(48). In Fig. 11 we present the average particle
ation events. density as a function of. The plot shows a pitchfork bifur-
When the states are not well separated, or diffusion i§ation characteristic of second order phase transitions. The
weak, there is a high probability of the spontaneous nuclesimulation points were obtained by monitoring the global
ation of long-lived domains of the second phase in the sea gfensity of specie# as a function of time within the statis-
dominant phase. Thus, in simulations we observed that, nedi€ally stationary regime. Six points widely separated in time
critical transitions, fluctuations strongly affect local station-are plotted for each value of. Below the transition, for
ary probability distributions. An essential feature of thelarge values ofy, these points are randomly distributed about
phase transition process is the reactive correlations betwedhe unstable steady stata,b) = (1/2,1/2). Above the transi-
A andB species that build up at a node when diffusion is nottion, the system switches between the two stable phases.
infinite. As a result, as demonstrated in Fig. 8, the site disThus, in this region the stationary probability density is
tribution is not binomial. These local correlations propagatesharply peaked about the deterministic steady state values,
to neighboring lattice nodes and are eventually destroyed byith very small density between these density maxima.
diffusion. Consequently, the character of the local fluctua- Deviations of mean-field results from the simulations may
tions is affected by the nature of the species site correlation$€ attributed to the existence of long range correlations near
and any description of the destruction of patterns and phadée critical transition. The ratio of mean-field and compu-
transitions must account for the buildup of these local corretated y.; values is close to that of the Ising model. This
lations. supports the assumption that the shift in the transition point
Consider the evolution of the probability distribution gov- is due to the neglect of spatial information in the mean-field
erned by the Markov chaifB4) with a approximated by the diffusion model. In Fig. 12 domains corresponding to differ-
average particle density in the entire system, which ignt reaction-diffusion ratios near the transition are shown.
equivalent to an average over the probability distribution. InThe domain sizes decrease @sncreases and this leads to
this case, the evolution of the probability density is given bythe above-mentioned breakdown of the mean-field descrip-
tion.
~ The microscopic model does not possess a conserved or-
P(t+1)=P()=W(()P(1), c(t)= % (M) Pn(1) der parameter ar?d we expect the sysptem to be close to model
(48) A of critical phenomena under the conditions described
above. In Fig. 13 we present results for the spatial correlation
wherec is a vector of average species concentrations. Weunctions obtained during evolution from an unstable state.
use the symboW for W in Eq. (35) with a andb replaced Dynamical scaling results obtained from the assumption of
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FIG. 12. Snapshots of domains near the second order phase

transition. Values of the scaling coefficieptare marked in Fig. 11 02 r P i
by arrows. ;

v Ly v’._‘ v
curvature-dri\{en coarsening _ yields a scaling exponent of 0.0 02 03 0.5 0.8 13 21 34
0.5[18]. In this case the scaling form is Y

FIG. 14. Noise-induced first order phase transition. Results of
r , r . lattice-gas simulations+) and mean-field theorgdashed lingare
C(r.t)= q(t) (W) with  q(t)~ \/f (49) displayed. The lowedfdotted-dashed linecurve shows the ampli-
tude of the mean-field density oscillations. Trajectories of mean-
. _ . field densities for values marked by arrows are shown in Fig. 15.
whereq(t) is a characteristic domain length. The collapse ofgeaction transition probabilities used in EQ.0) are k;=0.82,
the correlation function confirms the assumed form of thg.,—(.167, andk,=0.133. Mean-field parameter values of Ef)
character of the coarsening. aree=0.38,a=1.45, and3=0.0. Simulations were carried out on
We note that in general the FitzHugh-Nagumo modely 64x 64x 64 lattice.
does not have a free energy functional and thus the corre-
spondence with model A is not complete. In Fig. 14 we

present results of simulations in a different regime where the, . - stationary cycle, there are no self-consistent stable
mass-action fixed points are less well separated. The resu'&%lutions of the systerm’S). In this case the average particle
suggest the existence of a first order phase transition. In thi&ensity of the system oscillates around the average value
case the plot of the average particle c_iensity does not_follow ?1/2,1/2) and the stationary symmetric probability distribu-
contlnuou_s.path as afuncthn gfbut displays asharpljur.np, tion transforms into a rotating probability distribution after
The origin of such behavior may be understood within theyis 1onf bifurcation. For the two chosen values in this
mean-field approximation. The time evolution of the aVer""geregion one observes limit cycle behavior. There is a small-
particle density is shown in Fig. 15 for various diffusion- amplitL’Jde limit cycle aty=2.3 (dashed ling which grows
reaction ratios indicated by arrows in Fig. 14. For the Iarges{0 a large limit cycle aty= 1.3 (solid line). Subsequently, at
v value, y=3.3, the system spirals to the stable focus at ' ' '

(a,b)=(1/2,1/2) (finely dotted line in Fig. 1 We observe

that above the first critical point, when steady state bifurcates 0.8 : . . . .
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FIG. 15. Trajectories of the mean-field average densities com-
FIG. 13. Collapse of spatial correlation functions obtained in theputed from Eq.(48) corresponding to thes values{0.8, 1.3, 2.3,
course of annealing from a deep quench. System parameters are tB&}. System parameters are identical with those of Fig. 14. See text
same as in Fig. 8 and correspond to a scaling coefficjend.2. for details.
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y=1.2, the cycle collapses to the stable points which, insible three-dimensional simulations of complex structures
turn, evolve to the mean-field values. Evolution to the stablesuch as links and kno{d.7].
focus aty=0.8 is shown as a solid line in Fig. 15. The Markov chain model that underlies the lattice-gas
The absence of a self-consistent stationary solution of thénplementation was described and the conditions needed to
mean-field approximation requires discussion. In a |arge spé&leld the difo.Sion, mass-action, and. reaCt.ion-difoSion equa'
tially distributed system the picture of an oscillating prob- fions were discussed. These considerations also provide a
ability density seems to be unrealistic. The cycle has finitdh€ans to investigate the breakdown of the macroscopic mod-
period and synchronization of an infinite system during onls: . _
period is improbable. Instead, there are random oscillating " @PPropriate limits the model was shown to reproduce
patches of varying phases distributed over system. In thi%‘e chemical patterns seen in reaction-diffsuion models with

. L w ;FitzHugh-Nagumo kinetics. However, utilizing the fact that
case the average particle density is given by the unstablethe model is microscopic, the effects of fluctuations on pat-

solution .Of SV_Ste”“‘.B)- In the spa_tially distributed system tern formation and the breakdown of mean-field and
undlerg(r)]mg b_|furca|i|on from ? bllstalble statle to(? steadyq 1 ction-diffusion descriptions were studied. In particular, as
cycle, the noise takes anomalously large values due 10 thge reaction rate increases relative to diffusion, the local
existence of domains of different phags). This accounts  gqyilibrium description was shown to break down. Chemical
for the yvlde_ distribution of the stroboscopic trajectory pomtspatterns are destroyed and noise-induced phase transition
shown in Fig. 14. _ _ phenomena were observed. The character and order of the
The critical phenomena discussed above do not give 8hase transformations depends on the parameter regime.
complete picture pf the.posgble phase _transmons in the ne present paper by no means completes the study of
model but do provide insight into the possible types of sySinemal fluctuations on pattern formation processes in this
tem behavior. A full description must properly account for 4y namical system. Since the macroscopic model does not, in
nonlocal correlations as well as the local reactive correla—genera| possess a free energy functional, an especially rich
tions. variety of phenomena are possible. We have focussed solely
on the bistable regime and considered only a few examples
VIl. SUMMARY of pattern formation processes. Other regimes, such as the
The two-species reaction scheme that leads to thgscillatory and excitable regimes, may now be studied from
a microscopic point of view using the model and techniques

FitzHugh-Nagumo mass-action rate law implies a local reacd looed h Th h th ’ h gel
tive collision dynamics, which was used to investigate this eveloped heré. 1hroug € USE of such models one may

system from a microscopic point of view. The fact that thegain insight into th_e_ st_atistical m_echanics of spatially distrib-
reaction scheme depends on both the particle occupancié'éed’ far-from-equilibrium, reacting systems.

and their vacancies means that the_scheme may be |mple- ACKNOWLEDGMENTS
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